On primes and practical numbers


A number n is practical if every integer in [1, n] can be expressed as a subset sum of the positive divisors of n. We consider the distribution of practical numbers that are also shifted primes, improving a theorem of Guo and Weingartner. In addition, essentially proving a conjecture of Margenstern, we show that all large odd numbers are the sum of a prime and a practical number. We also consider an analogue of the prime k-tuples conjecture for practical numbers, proving the “correct” upper bound, and for pairs, improving on a lower bound of Melfi.

This is a preview of subscription content, access via your institution.


  1. 1.

    DeVos, M.: Graph theory lecture notes www.sfu.ca/~mdevos/notes/graph/

  2. 2.

    Erdős, P.: On a diophantine equation. Mat. Lapok 1, 192–210 (1950)

    MathSciNet  Google Scholar 

  3. 3.

    Friedlander, J., Iwaniec, H.: Opera de cribro. American Mathematical Society, Providence (2010)

    Google Scholar 

  4. 4.

    Guo, V., Weingartner, A.: The practicality of shifted primes. Integers 18, 93 (2018)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Guy, R.K.: Unsolved Problems in Number Theory, 3rd edn. Springer, New York (2004)

    Google Scholar 

  6. 6.

    Hall, R.R., Tenenbaum, G.: Divisors. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  7. 7.

    Lick, D.R., White, A.T.: \(k\)-Degenerate graphs. Can. J. Math. 22, 1082–1096 (1970)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Margenstern, M.: Les nombres pratiques: théorie, observations et conjectures. J. Number Theory 37, 1–36 (1991)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Maynard, J.: Primes in arithmetic progressions to large moduli I: fixed residue classes. arXiv:2006.06572v1 (2020)

  10. 10.

    Melfi, G.: On two conjectures about practical numbers. J. Number Theory 56, 205–210 (1996)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Melfi, G.: A note on twin practical numbers. Matematiche (Catania) 57(2002), 111–117 (2004)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Riesel, H., Vaughan, R.: On sums of primes. Arkiv. för Mat. 21, 45–74 (1983)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Saias, E.: Entiers à diviseurs denses 1. J. Number Theory 62, 163–191 (1997)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Saias, E.: Entiers à diviseurs denses 2. J. Number Theory 86, 39–49 (2001)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Sierpiński, W.: Sur une propriété des nombres naturels. Ann. Math. Pura Appl. 39, 69–74 (1955)

  16. 16.

    Srinivasan, A.K.: Practical numbers. Curr. Sci. 17, 179–180 (1948)

    MathSciNet  Google Scholar 

  17. 17.

    Stewart, B.M.: Sums of distinct divisors. Am. J. Math. 76, 779–785 (1954)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Sun, Z.-W.: Conjectures on representations involving primes. In: Nathanson, M.B. (ed.) Combinatorial and Additive Number Theory II, pp. 279–310. Springer PROMS, New York (2018)

    Google Scholar 

  19. 19.

    Sun, Z.-W.: Write \(2n+1=p+q\) with \(p\) prime and \(q\) practical. https://mathoverflow.net/questions/360288/

  20. 20.

    Tenenbaum, G.: Sur un problème de crible et ses applications. Ann. Sci. École Norm. Sup. (4) 19, 1–30 (1986)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Tenenbaum, G.: Graduate Studies in Mathematics. Introduction to analytic and probabilistic number theory. American Mathematical Society, Providence (2015)

    Google Scholar 

  22. 22.

    Weingartner, A.: Integers with dense divisors. J. Number Theory 108, 1–17 (2004)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Weingartner, A.: Practical numbers and the distribution of divisors. Q. J. Math. 66, 743–758 (2015)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Weingartner, A.: The constant factor in the asymptotic for practical numbers. Int. J. Number Theory 16, 629–638 (2020)

    MathSciNet  Article  Google Scholar 

Download references


We thank David Eppstein for informing us of [7] and Paul Pollack for [19].

Author information



Corresponding author

Correspondence to Andreas Weingartner.

Additional information

In memory of Ron Graham (1935–2020) and Richard Guy (1916–2020)

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pomerance, C., Weingartner, A. On primes and practical numbers. Ramanujan J (2021). https://doi.org/10.1007/s11139-020-00354-y

Download citation


  • Practical number
  • Shifted prime

Mathematics Subject Classification

  • 11N25 (11N37)