Skip to main content
Log in

Note on square-root partitions into distinct parts

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let \(r_D(n)\) be the number of square-root partitions of n into distinct parts. We will give the asymptotic formula of \(r_D(n)\),

$$\begin{aligned} r_D(n)&\sim 2^{-7/6}3^{-1/3}\pi ^{-1/2}\zeta (3)^{1/6}n^{-2/3}\\&\quad \times \exp \Bigg (\frac{3^{4/3}\zeta (3)^{1/3}}{2}n^{2/3}+\frac{\zeta (2)}{2\cdot 3^{1/3}\zeta (3)^{1/3}}n^{1/3}-\frac{\zeta (2)^2}{72\zeta (3)}\Bigg ), \end{aligned}$$

by adjusting the well-known approach of Meinardus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. In fact, if we define \(\mu (\sigma ):=\inf \big \{m\in \mathbb {R}:\zeta (\sigma +it)=O(|t|^m)\big \}\), then

    $$\begin{aligned}\mu (\sigma )={\left\{ \begin{array}{ll} 0 &{} \text {if }\sigma >1,\\ \frac{1}{2}(1-\sigma ) &{} \text {if }0\le \sigma \le 1,\\ \frac{1}{2}-\sigma &{} \text {if }\sigma <0. \end{array}\right. }\end{aligned}$$

    When \(\sigma >1\), it is trivial. When \(\sigma <0\), the result follows from the functional equation of the Riemann zeta function. When \(0\le \sigma \le 1\), the result can be deduced from the theorem of Phragmén–Lindelöf.

References

  1. Andrews, G.E.: The Theory of Partitions. Reprint of the 1976 Original. Cambridge Mathematical Library, p. xvi+255. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  2. Balasubramanian, R., Luca, F.: On the number of factorizations of an integer. Integers 11, A12 (2011). 5 pp

    Article  MathSciNet  Google Scholar 

  3. Granovsky, B.L., Stark, D.: A Meinardus theorem with multiple singularities. Commun. Math. Phys. 314(2), 329–350 (2012)

    Article  MathSciNet  Google Scholar 

  4. Luca, F., Ralaivaosaona, D.: An explicit bound for the number of partitions into roots. J. Number Theory 169, 250–264 (2016)

    Article  MathSciNet  Google Scholar 

  5. Meinardus, G.: Asymptotische aussagen über partitionen. Math. Z. 59, 388–398 (1954)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shane Chern.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Expansion of \(X^{-1}\)

Appendix A: Expansion of \(X^{-1}\)

In this appendix, we give the expansion of \(X^{-1}\). Recall from (2.5) that

$$\begin{aligned} aX^{-3}+bX^{-2}-n=0, \end{aligned}$$
(A.1)

where

$$\begin{aligned} a=3\zeta (3) \quad \text {and}\quad b=\frac{\zeta (2)}{2}. \end{aligned}$$

Let us write

$$\begin{aligned} \mu =n^{-\frac{1}{3}}\quad \text {and}\quad X^{-1}=a^{-\frac{1}{3}}\mu ^{-1}+\xi . \end{aligned}$$

Then (A.1) becomes

$$\begin{aligned} a\big (a^{-\frac{1}{3}}\mu ^{-1}+\xi \big )^{3}+b\big (a^{-\frac{1}{3}}\mu ^{-1}+\xi \big )^{2}-\mu ^{-3}=0, \end{aligned}$$

so that by multiplying by \(a^{\frac{2}{3}}\mu ^2\) on both sides, one has

$$\begin{aligned} a\xi \cdot \Big (\big (1+a^{\frac{1}{3}}\mu \xi \big )^2+\big (1+a^{\frac{1}{3}}\mu \xi \big )+1\Big )+b\big (1+a^{\frac{1}{3}}\mu \xi \big )^{2}=0. \end{aligned}$$
(A.2)

Now we may treat \(\xi :=\xi (\mu )\) as an implicit function of \(\mu \) defined by (A.2). Note that

$$\begin{aligned} \xi (0)=-\frac{b}{3a}=-\frac{\zeta (2)}{18\zeta (3)}. \end{aligned}$$

The implicit function theorem ensures that we may write \(\xi (\mu )\) as a power series in \(\mu \) in a neighborhood of \(\mu =0\). We compute that

$$\begin{aligned} \xi ^\prime (0)=\frac{b^2}{9 a^{5/3}}=\frac{\zeta (2)^2}{36(3\zeta (3))^{5/3}}. \end{aligned}$$

Hence,

$$\begin{aligned} \xi (\mu )=-\frac{\zeta (2)}{18\zeta (3)}+\frac{\zeta (2)^2}{36(3\zeta (3))^{5/3}}\mu +O(\mu ^2) \end{aligned}$$

so that as \(n\rightarrow \infty \),

$$\begin{aligned} X^{-1}=\frac{1}{(3\zeta (3))^{1/3}}n^{\frac{1}{3}}-\frac{\zeta (2)}{18\zeta (3)}+\frac{\zeta (2)^2}{36(3\zeta (3))^{5/3}}n^{-\frac{1}{3}}+O(n^{-\frac{2}{3}}). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chern, S. Note on square-root partitions into distinct parts. Ramanujan J 54, 449–461 (2021). https://doi.org/10.1007/s11139-019-00191-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-019-00191-8

Keywords

Mathematics Subject Classification

Navigation