Skip to main content
Log in

A control theorem for p-adic automorphic forms and Teitelbaum’s \(\mathcal {L}\)-invariant

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

In this article, we describe an efficient method for computing Teitelbaum’s p-adic \(\mathcal {L}\)-invariant. These invariants are realized as the eigenvalues of the \(\mathcal {L}\)-operator acting on a space of harmonic cocycles on the Bruhat–Tits tree \({\mathcal {T}}\), which is computable by the methods of Franc and Masdeu described in (LMS J Comput Math 17:1–23, 2014). The main difficulty in computing the \(\mathcal {L}\)-operator is the efficient computation of the p-adic Coleman integrals in its definition. To solve this problem, we use overconvergent methods, first developed by Darmon, Greenberg, Pollack and Stevens. In order to make these methods applicable to our setting, we prove a control theorem for p-adic automorphic forms of arbitrary even weight. Moreover, we give computational evidence for relations between slopes of \(\mathcal {L}\)-invariants of different levels and weights for \(p=2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anni, S., Böckle, G., Gräf, P.M., Troya, Á.: Computing \(\cal{L}\)-invariants via the Greenberg-Stevens formula. ArXiv e-prints, arxiv:1807.10082v2 (2019)

  2. Ash, A., Stevens, G.: Cohomology of arithmetic groups and congruences between systems of Hecke eigenvalues. J. Reine Angew. Math. 365, 192–220 (1986)

    MathSciNet  MATH  Google Scholar 

  3. Bergdall, J.: Upper bounds for constant slope \(p\)-adic families of modular forms. ArXiv e-prints, arxiv:1708.03663v1 (2017)

  4. Bertolini, M., Darmon, H., Iovita, A.: Families of automorphic forms on definite quaternion algebras and Teitelbaum’s conjecture. Astérisque 331, 29–64 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Breuil, C.: Série spéciale \(p\)-adique et cohomologie étale complétée. Astérisque 331, 65–115 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Buzzard, K.: Questions about slopes of modular forms. Astérisque 298, 1–15 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Coleman, R.J.: A \(p\)-adic Shimura isomorphism and \(p\)-adic periods of modular forms. Contemp. Math. 165, 21–51 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Colmez, P.: Invariants \(\cal{L}\) et dérivées de valeurs propres de Frobenius. Astérisque 331, 13–28 (2010)

    MATH  Google Scholar 

  9. Darmon, H.: Integration on \({\cal{H}_{p}}\times \cal{H}\) and arithmetic applications. Ann. Math. (2) 154(3), 589–639 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Darmon, H.: Rational points on modular elliptic curves. CBMS Regional Conference Series in Mathematics 101 (2004)

  11. Darmon, H., Pollack, R.: The efficient calculation of Stark–Heegner points via overconvergent modular symbols. Isr. J. Math. 153, 319–354 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dasgupta, S., Teitelbaum, J.T.: The \(p\)-adic upper half plane. Am. Math. Soc. Univ. Lect. Ser. 45, 65–121 (2008)

    MathSciNet  MATH  Google Scholar 

  13. de Shalit, E.: Eichler cohomology and periods of modular forms on \(p\)-adic Schottky groups. J. Reine Angew. Math. 400, 3–31 (1989)

    MathSciNet  MATH  Google Scholar 

  14. Drinfeld, V.G.: Coverings of \(p\)-adic symmetric regions. Funct. Anal. i Priložen. 10(2), 29–40 (1976)

    Google Scholar 

  15. Emerton, B.: \(p\)-adic \(L\)-functions and unitary completions of representations of \(p\)-adic reductive groups. Duke Math. J. 130(2), 353–392 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Franc, C., Masdeu, M.: Computing fundamental domains for the Bruhat–Tits tree for \({\text{ GL }_2({\mathbb{Q}}_p)}\), \(p\)-adic automorphic forms, and the canonical embedding of Shimura curves. LMS J. Comput. Math. 17, 1–23 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gerritzen, L., van der Put, M.: Schottky Groups and Mumford Curves. Lecture Notes in Mathematics, vol. 817. Springer, Berlin (1980)

    Book  MATH  Google Scholar 

  18. Gräf, P.M.: Teitelbaum’s \(\cal{L}\)-invariant and rigid analytic automorphic forms. Master thesis, Heidelberg University. http://typo.iwr.uni-heidelberg.de/fileadmin/groups/arithgeo/templates/data/Peter_Graef/Thesis_Peter_Graef.pdf (2015)

  19. Greenberg, M.: Heegner point computations via numerical \(p\)-adic integration. Lect. Notes Comput. Sci. 4076, 361–376 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Greenberg, M.: Lifting modular symbols of noncritical slope. Isr. J. Math. 161(1), 141–155 (2007)

    Article  MATH  Google Scholar 

  21. Greenberg, R., Stevens, G.: \(p\)-adic \(L\)-functions and \(p\)-adic periods of modular forms. Invent. Math. 111(2), 407–447 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jacquet, H., Langlands, R.P.: Automorphic Forms on \(\text{ GL }_2\). Lecture Notes in Mathematics, vol. 114. Springer, Berlin (1970)

    Book  MATH  Google Scholar 

  23. Klingenberg, C.: On \(p\)-adic \(L\)-functions of Mumford curves. Contemp. Math. 165, 277–315 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kochanek, U.: Über die Diagonalisierbarkeit globaler \(p\)-adischer Heckeoperatoren. Diplomarbeit, Köln University, Köln (1988)

    Google Scholar 

  25. Lauder, A.: Computations with classical and \(p\)-adic modular forms. LMS J. Comput. Math. 14, 214–231 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Martin, G.: Dimensions of the spaces of cusp forms and newforms on \(\Gamma _0(N)\) and \(\Gamma _1(N)\). J. Number Theory 112, 298–331 (2005)

    Article  MathSciNet  Google Scholar 

  27. Mazur, B.: On monodromy invariants occuring in global arithmetic, and Fontaine’s theory. Contemp. Math. 165, 1–20 (1994)

    Article  MATH  Google Scholar 

  28. Mazur, B., Tate, J., Teitelbaum, J.T.: On \(p\)-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. Math. 83(1), 1–48 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Orton, L.: An elementary proof of a weak exceptional zero conjecture. Can. J. Math. 56(2), 373–405 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pollack, D., Pollack, R.: A construction of rigid analytic cohomology classes for congruence subgroups of \({\rm SL}_{3}(\mathbb{Z})\). Can. J. Math. 61(3), 674–690 (2009)

    Article  MATH  Google Scholar 

  31. Pollack, R., Stevens, G.: Overconvergent modular symbols and \(p\)-adic \(L\)-functions. Ann. Sci. Ec. Norm. Super. (4) 44(1), 1–42 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Serre, J.P.: Trees. Monographs in Mathematics. Springer, Berlin (2003)

    MATH  Google Scholar 

  33. Stein, W. et al.: Sage Mathematics Software. The Sage Development Team. http://www.sagemath.org (2017)

  34. Stevens, G.: Rigid analytic modular symbols. preprint (1994)

  35. Teitelbaum, J.T.: Values of \(p\)-adic \(L\)-functions and a \(p\)-adic Poisson kernel. Invent. Math. 101(2), 395–410 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  36. Vonk, J.: Computing overconvergent forms for small primes. LMS J. Comput. Math. 18, 250–257 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Gebhard Böckle for suggesting this interesting topic and for his support and encouragement. He is grateful to Marc Masdeu, Tommaso Centeleghe and Samuele Anni for many enlightening discussions and their comments on this article. The author expresses his gratitude to Adrian Iovita and the Mathematics department of Concordia University for their hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Mathias Gräf.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was supported by the DFG via the Forschergruppe 1920 and the SPP 1489. Moreover, part of this work was done during a stay at Concordia University, Montréal funded by a DAAD-Doktorandenstipendium.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gräf, P.M. A control theorem for p-adic automorphic forms and Teitelbaum’s \(\mathcal {L}\)-invariant. Ramanujan J 50, 13–43 (2019). https://doi.org/10.1007/s11139-019-00160-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-019-00160-1

Keywords

Mathematics Subject Classification

Navigation