Skip to main content
Log in

Subgroups of cyclic groups and values of the Riemann zeta function

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let k be a positive integer, x a large real number, and let \(C_n\) be the cyclic group of order n. For \(k\le n\le x\) we determine the mean average order of the subgroups of \(C_n\) generated by k distinct elements and we give asymptotic results of related averaging functions of the orders of subgroups of cyclic groups. The average order is expressed in terms of Jordan’s totient functions and Stirling numbers of the second kind. We have the following consequence. Let k and x be as above. For \(k\le n\le x\), the mean average proportion of \(C_n\) generated by k distinct elements approaches \(\zeta (k+2)/\zeta (k+1)\) as x grows, where \(\zeta (s)\) is the Riemann zeta function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adhikari, S.D., Sankaranarayanan, A.: On an error term related to the Jordan totient function \(J_k(n)\). J. Number Theory 34, 178–188 (1990)

    Article  MathSciNet  Google Scholar 

  2. Amiri, H., Amiri, S.M.J., Isaacs, I.M.: Sums of element orders in finite groups. Commun. Algebra 37(9), 2978–2980 (2009)

    Article  MathSciNet  Google Scholar 

  3. Amiri, H., Amiri, S.M.J.: Sums of element orders on finite groups of the same order. J. Algebra Appl. 10(2), 187–190 (2011)

    Article  MathSciNet  Google Scholar 

  4. Amiri, H., Amiri, S.M.J.: Sums of element orders of maximal subgroups of the symmetric group. Commun. Algebra 40(2), 770–778 (2012)

    Article  MathSciNet  Google Scholar 

  5. Babai, L.: The probability of generating the symmetric group. J. Combin. Theory Ser. A 52(1), 148–153 (1989)

    Article  MathSciNet  Google Scholar 

  6. Beardon, A.F.: Sums of powers of integers. Am. Math. Mon. 103, 201–213 (1996)

    Article  MathSciNet  Google Scholar 

  7. Dixon, J.D.: The probability of generating the symmetric group. Math. Z. 110, 199–205 (1969)

    Article  MathSciNet  Google Scholar 

  8. Dixon, J.D.: Asymptotics of generating the symmetric and alternating groups. Electron. J. Combin. 12 (2005), Research Paper 56

  9. Edwards, A.W.F.: Sums of powers of integers: a little of the history. Math. Gaz. 66, 22–29 (1982)

    Article  MathSciNet  Google Scholar 

  10. Erdős, P., Turán, P.: On some problems of a statistical group theory IV. Acta Math. Acad. Scient. Hung. 19, 413–435 (1968)

    Article  MathSciNet  Google Scholar 

  11. Gallian, J.: Contemporary Abstract Algebra, 6th edn. Houghton Mifflin Company, Boston (2006)

    MATH  Google Scholar 

  12. Gathen, J., Knopfmacher, A., Luca, F., Lucht, L.G., Shparlinski, I.E.: Average order in cyclic groups. J. de Théorie des Nombres de Bordeaux 16, 107–123 (2004)

    Article  MathSciNet  Google Scholar 

  13. Goh, W.M., Schmutz, E.: The expected order of a random permutation. Bull. Lond. Math. Soc. 23(1), 34–42 (1991)

    Article  MathSciNet  Google Scholar 

  14. Gould, H.W., Shonhiwa, T.: Functions of GCD’s and LCM’s. Indian J. Math. 39(1), 11–35 (1997)

    MathSciNet  MATH  Google Scholar 

  15. Gould, H.W., Shonhiwa, T.: A generalization of Cesàro’s function and other results. Indian J. Math. 39(2), 183–194 (1997)

    MathSciNet  MATH  Google Scholar 

  16. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 6th edn. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  17. Harrington, J., Jones, L., Lamarche, A.: Characterizing finite groups using the sum of the orders of the elements. Int. J. Comb. vol. (2014), Article 835125

  18. Hu, Y., Pomerance, C.: The average order of elements in the multiplicative group of a finite field. Involv. J. Math. 5(2), 229–236 (2012)

    Article  MathSciNet  Google Scholar 

  19. Luca, F.: Some mean values related to average multiplicative orders of elements in finite fields. Ramanujan J. 9, 33–44 (2005)

    Article  MathSciNet  Google Scholar 

  20. Marefat, Y., Iranmanesh, A., Tehranian, A.: On the sum of element orders of finite simple groups. J. Algebra Appl. 10(2) (2013)

  21. McCarthy, J.P.: Introduction to Arithmetical Functions. Springer, New York (1986)

    Book  Google Scholar 

  22. Rosen, K.H.: Discrete Mathematics and Its Applications, 7th edn. McGraw-Hill, New York (2007)

    Google Scholar 

  23. Schmutz, E.: Proof of a conjecture of Erdős and Turán. J. Number Theory 31(3), 260–271 (1989)

    Article  MathSciNet  Google Scholar 

  24. Spencer, J.: (with L. Florescu), Asymptopia (Student Mathematical Library), vol. 71. American Mathematical Society, Providence (2014)

  25. Stanley, R.P.: Enumerative Combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1997)

  26. Walfisz, A.: Weylsche Exponentialsummen in der neueren Zahlentheorie, Mathematische Forschungsberichte 15 VEB Deutscher Verlag der Wissenschaften, Berlin (1963)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Lanphier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Farrah, M., Lanphier, D. Subgroups of cyclic groups and values of the Riemann zeta function. Ramanujan J 47, 547–564 (2018). https://doi.org/10.1007/s11139-018-9992-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-018-9992-z

Keywords

Mathematics Subject Classification

Navigation