A quicker approximation of the gamma function towards the Windschitl’s formula by continued fraction



In this paper, we establish a quicker approximation with continued fraction and some inequalities for the gamma function based on Windschitl’s formula. We also give some numerical computations to demonstrate the superiority of our new approximation over the classical ones.


Stirling’s formula Windschitl’s formula Continued fraction Gamma function 

Mathematics Subject Classification

33B15 41A10 42A16 41A60 


  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. Applied Mathematics Series, vol. 55. Dover, New York (1972)MATHGoogle Scholar
  2. 2.
    Alzer, H.: On some inequalities for the gamma and psi functions. Math. Comput. 66(217), 373–389 (1997)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alzer, H.: Sharp upper and lower bounds for the gamma function. Proc. R. Soc. Edinb. A 139(4), 709–718 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Burnside, W.: A rapidly convergent series for logN!. Messenger Math. 46, 157–159 (1917)Google Scholar
  5. 5.
  6. 6.
    Lu, D., Feng, J., Ma, C.: A general asymptotic formula of the gamma function based on the Burnsides formula. J. Number Theory 145, 317–328 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Lu, D., Song, L., Ma, C.: A quicker continued fraction approximation of the gamma function related to the Windschitl’s formula. Numer. Algor. 72(4), 865–874 (2016)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Lu, D., Wang, X., Song, L.: A new continued fraction approximation and inequalities for the Gamma function via the Tri-gamma function. Ramanujan J. (2017). Google Scholar
  9. 9.
    Mortici, C.: Very accurate estimates of the polygamma functions. Asymptot. Anal. 68(3), 125–134 (2010)MathSciNetMATHGoogle Scholar
  10. 10.
    Mortici, C.: A quicker convergence toward the gamma constant with the logarithm term involving the constant e. Carpathian J. Math. 26, 86–91 (2010)MathSciNetMATHGoogle Scholar
  11. 11.
    Mortici, C.: On new sequences converging towards the Euler-Mascheroni constant. Comput. Math. Appl. 59(8), 2610–2614 (2010)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Mortici, C.: Product approximations via asymptotic integration. Am. Math. Mon. 117(5), 434–441 (2010)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Mortici, C.: A new Stirling series as continued fraction. Numer. Algorithms 56(1), 17–26 (2011)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Mortici, C.: Ramanujans estimate for the gamma function via monotonicity arguments. Ramanujan J. 25, 149–154 (2011)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Mortici, C.: A continued fraction approximation of the gamma function. J. Math. Anal. Appl. 402, 405–410 (2013)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Mortici, C.: A new fast asymptotic series for the gamma function. Ramanujan J. 38(3), 549–559 (2015)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Nemes, G.: New asymptotic expansion for the Gamma function. Arch. Math. 95, 161–169 (2010)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsNortheastern UniversityShenyangChina
  2. 2.School of Mathematical SciencesDalian University of TechnologyDalianChina

Personalised recommendations