Skip to main content
Log in

From Wallis and Forsyth to Ramanujan

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We show how a couple of Ramanujan’s series for \(1/\pi \) can be deduced directly from Forsyth’s series and from Wallis’s product formula for \(\pi \). The same method is used to obtain Bauer’s alternating series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer, G.: Von den Coefficienten der Reihen von Kugelfunctionen einer Variablen. J. Reine Angew. Math. 56, 101–121 (1859)

    Article  MathSciNet  Google Scholar 

  2. Ben-Ari, I., Hay, D., Roitershtein, A.: On Wallis-type products and Pólya’s urn schemes. Am. Math. Mon. 121(5), 422–432 (2014)

    Article  Google Scholar 

  3. Baruah, N.D., Berndt, B.C., Chan, H.H.: Ramanujan’s series for \(1/\pi \): a survey. Am. Math. Mon. 116(7), 567–587 (2009)

    Article  MathSciNet  Google Scholar 

  4. Chu, W.: Dougall’s bilateral \( _2H_2\)-series and Ramanujan-like \(\pi \)-formulae. Math. Comp. 80, 2223–2251 (2011)

    Article  MathSciNet  Google Scholar 

  5. Dougall, J.: On Vandermonde’s theorem and some more general expansions. Proc. Edinb. Math. Soc. 25, 114–132 (1907)

    Article  Google Scholar 

  6. Forsyth, A.R.: A Series for \(\frac{1}{\pi }\). Messenger Math. 12, 142–143 (1883)

    Google Scholar 

  7. Glaisher, J.W.L.: On series for \(\frac{1}{\pi }\) and \(\frac{1}{\pi ^2}\). Q. J. Pure Appl. Math. 37, 173–198 (1905–1906)

  8. Guillera, J.: Series de Ramanujan: Generalizaciones y conjeturas. Ph.D. Thesis, University of Zaragoza, Spain (2007)

  9. Guillera, J.: Accelerating Dougall’s \({}_5F_4\) sum and the WZ-algorithm. arXiv:1611.04385 (2016). Accessed 14 Mar 2017

  10. Knopp, K.: Theory and Application of Infinite Series, 2nd edn. Blackie, London (1954). (4th reprint)

    MATH  Google Scholar 

  11. Levrie, P.: Using Fourier-Legendre expansions to derive series for \(1/\pi \) and \(1/\pi ^2\). Ramanujan J. 22(2), 221–230 (2010)

    Article  MathSciNet  Google Scholar 

  12. Liu, Z.-G.: A summation formula and Ramanujan type series. J. Math. Anal. Appl. 389(2), 1059–1065 (2012)

    Article  MathSciNet  Google Scholar 

  13. Liu, Z.-G.: Gauss summation and Ramanujan-type series for \(1/\pi \). Int. J. Number Theory 8(2), 289–297 (2012)

    Article  MathSciNet  Google Scholar 

  14. Nimbran, A.S.: Generalized Wallis-Euler products and new infinite products for \(\pi \). Math. Stud. 83(1–4), 155–164 (2014)

    MathSciNet  Google Scholar 

  15. Nimbran, A.S.: Deriving Forsyth-Glaisher type series for \(\frac{1}{\pi }\) and Catalan’s constant by an elementary method. Math. Stud. 84(1–2), 69–86 (2015)

    MathSciNet  Google Scholar 

  16. Ramanujan, S.: Modular equations and approximations to \(\frac{1}{\pi }\). Q. J. Pure Appl. Math. 45, 350–372 (1914). http://ramanujan.sirinudi.org/Volumes/published/ram06.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Levrie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levrie, P., Nimbran, A.S. From Wallis and Forsyth to Ramanujan. Ramanujan J 47, 533–545 (2018). https://doi.org/10.1007/s11139-017-9940-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-017-9940-3

Keywords

Mathematics Subject Classification

Navigation