Skip to main content
Log in

Self-replication and Borwein-like algorithms

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Using a self-replicating method, we generalize with a free parameter some Borwein algorithms for the number \(\pi \). This generalization includes values of the gamma function like \(\Gamma (1/3)\), \(\Gamma (1/4)\), and of course \(\Gamma (1/2)=\sqrt{\pi }\). In addition, we give new rapid algorithms for the perimeter of an ellipse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almkvist, G., Berndt, B.: Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, \(\pi \), and the ladies diary. Am. Math. Mon. 95, 585–608 (1988)

    MathSciNet  MATH  Google Scholar 

  2. Arndt, J.: Matters Computational (Ideas, Algorithms, Source Code). Springer, Berlin (2011)

    MATH  Google Scholar 

  3. Bailey, D., Borwein, J.: Pi: The Next Generation. Springer, Basel (2016)

    Book  Google Scholar 

  4. Berggren, L., Borwein, J., Borwein, P.: Pi: A Source Book. Springer, New York (1997)

    Book  Google Scholar 

  5. Borwein, J., Bailey, D.: Mathematics by Experiment (Plausible Reasoning in the 21st Century). A. K. Peters, Ltd., Wellesley (2008)

    MATH  Google Scholar 

  6. Borwein, J., Borwein, P.J.: Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity. Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York (1987)

    MATH  Google Scholar 

  7. Borwein, J., Borwein, P.: Ramanujan, modular equations, and approximations to Pi or how to compute one billion digits of Pi. Am. Math. Mon. 96, 201–219 (1989)

    Article  MathSciNet  Google Scholar 

  8. Borwein, J., Borwein, P.: A cubic counterpart of Jacobi’s identity and the AGM. Trans. Am. Math. Soc. 343, 691–701 (1991)

    MathSciNet  MATH  Google Scholar 

  9. Borwein, J., Garvan, F.: Approximations to \(\pi \) via the Dedekind eta function. CMS Conf. Proc. 20, 89–115 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Cooper, S.: Ramanujans Theta Functions. Springer, New York (2017)

    Book  Google Scholar 

  11. Cooper, S., Guillera, J., Straub, A., Zudilin, W.: Crouching AGM, Hidden Modularity. (Submitted)

  12. Guillera, J.: Easy proofs of some Borwein algorithms for \(\pi \). Am. Math. Mon. 115, 850–854 (2008)

    Article  MathSciNet  Google Scholar 

  13. Guillera, J.: New proofs of Borwein-type algorithms for Pi. Integral Transforms and Special functions. (Published online: June 29, 2016)

  14. Ramanujan, S.: Modular equations and approximations to \(\pi \). Q. J. Math. 45, 350–372 (1914)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Guillera.

Additional information

To the memory of Jonathan Borwein

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillera, J. Self-replication and Borwein-like algorithms. Ramanujan J 47, 447–455 (2018). https://doi.org/10.1007/s11139-017-9927-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-017-9927-0

Keywords

Mathematics Subject Classification

Navigation