Advertisement

The Ramanujan Journal

, Volume 38, Issue 3, pp 513–528 | Cite as

A converse to linear independence criteria, valid almost everywhere

  • S. Fischler
  • M. Hussain
  • S. Kristensen
  • J. Levesley
Article

Abstract

We prove a weighted analogue of the Khintchine–Groshev theorem, where the distance to the nearest integer is replaced by the absolute value. This is applied to proving the optimality of several linear independence criteria over the field of rational numbers.

Mathematics Subject Classification

Primary 11J83 Secondary 11J72 11J13 

Notes

Acknowledgments

We are thankful to Yann Bugeaud and Detta Dickinson for suggesting us to work together, and to Michel Waldschmidt and an anonymous referee for their useful remarks.

References

  1. 1.
    Ball, K.M., Rivoal, T.: Irrationalité d’une infinité de valeurs de la fonction zêta aux entiers impairs. Invent. Math. 146(1), 193–207 (2001)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Beresnevich, V., Velani, S.: Classical metric diophantine approximation revisited: the Khintchine–Groshev theorem. Int. Math. Res. Not. IMRN 1, 69–86 (2010)MathSciNetGoogle Scholar
  3. 3.
    Bourbaki, N.: Algèbre. Chapter II, 3rd edn. Hermann, Paris (1962)Google Scholar
  4. 4.
    Bugeaud, Y., Laurent, M.: On exponents of homogeneous and inhomogeneous diophantine approximation. Moscow Math. J. 5(4), 747–766 (2005)MATHMathSciNetGoogle Scholar
  5. 5.
    Cassels, J.W.S.: An introduction to Diophantine approximation. Cambridge Tracts in Mathematics and Mathematical Physics, No. 45. Cambridge University Press, Cambridge (1957)Google Scholar
  6. 6.
    Cassels, J.W.S.: An introduction to the geometry of numbers. Grundlehren der Math. Wiss. No. 99. Springer, Berlin (1959)CrossRefGoogle Scholar
  7. 7.
    Chantanasiri, A.: Généralisation des critères pour l’indépendance linéaire de Nesterenko, Amoroso, Colmez, Fischler et Zudilin. Ann. Math. Blaise Pascal 19(1), 75–105 (2012)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Dickinson, D., Hussain, M.: The metric theory of mixed type linear forms. Int. J. Number Theory 9(1), 77–90 (2013)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Dodson, M.M.: Geometric and probabilistic ideas in the metric theory of Diophantine approximations. Uspekhi Mat. Nauk 48(5(293)), 77–106 (1993)MATHMathSciNetGoogle Scholar
  10. 10.
    Duffin, R.J., Schaeffer, A.C.: Khintchine’s problem in metric Diophantine approximation. Duke Math. J. 8, 243–255 (1941)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fel’dman, N.I., Nesterenko, Y.V.: In: Parshin, A.N., Shafarevich, I.R. (eds.) Number Theory IV, Transcendental Numbers. Encyclopaedia of Mathematical Sciences, Number 44. Springer, Berlin (1998)Google Scholar
  12. 12.
    Fischler, S.: Nesterenko’s linear independence criterion for vectors. Preprint arXiv:1202.2279, submitted (2012)
  13. 13.
    Fischler, S., Rivoal, T.: Irrationality exponent and rational approximations with prescribed growth. Proc. Am. Math. Soc. 138(8), 799–808 (2010)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Gallagher, P.: Metric simultaneous diophantine approximation. J. Lond. Math. Soc. 37, 387–390 (1962)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Groshev, A.V.: A theorem on systems of linear forms. Dokl. Akad. Nauk SSSR 19, 151–152 (1938)Google Scholar
  16. 16.
    Hussain, M., Kristensen, S.: Badly approximable systems of linear forms in absolute value. Unif. Dist. Theory 8(1), 7–15 (2013)MATHMathSciNetGoogle Scholar
  17. 17.
    Hussain, M., Kristensen, S.: Metrical results on systems of small linear forms. Int. J. Number Theory 9(3), 769–782 (2013)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Hussain, M., Levesley, J.: The metrical theory of simultaneously small linear forms. Funct. Approx. Comment. Math. 48(2), 167–181 (2013)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Hussain, M., Yusupova, T.: A note on the weighted Khintchine–Groshev theorem. J. Théorie des Nombres de Bordeaux 26, 385–397 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Jarník, V.: Zum Khintchineschen Übertragungssatz. Trudy Tbilisskogo Math. Inst. im A. M. Razmadze 3, 193–212 (1938)Google Scholar
  21. 21.
    Khintchine, A.: Zur metrischen theorie der diophantischen approximationen. Math. Z. 24(1), 706–714 (1926)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Nesterenko, Yu.V.: On the linear independence of numbers. Vestnik Moskov. Univ. Ser. I Mat. Mekh. [Moscow Univ. Math. Bull.], 40(1):46–49 [69-74] (1985)Google Scholar
  23. 23.
    Rivoal, T.: La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs. C. R. Acad. Sci. Paris, Ser. I, 331(4), 267–270 (2000)Google Scholar
  24. 24.
    Schmidt, W.M.: Metrical theorems on fractional parts of sequences. Trans. Am. Math. Soc. 110, 493–518 (1964)MATHCrossRefGoogle Scholar
  25. 25.
    Sprindžuk, V.G.: Metric Theory of Diophantine Approximations. V. H. Winston & Sons, Washington DC (1979). Translated from the Russian and edited by Richard A. Silverman, With a foreword by Donald J. Newman, Scripta Series in MathematicsGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • S. Fischler
    • 1
  • M. Hussain
    • 2
  • S. Kristensen
    • 3
  • J. Levesley
    • 4
  1. 1.Equipe d’Arithmétique et de Géométrie Algébrique, Université Paris-SudOrsay CedexFrance
  2. 2.School of Mathematical and Physical SciencesThe University of NewcastleCallaghanAustralia
  3. 3.Department of MathematicsAarhus UniversityAarhus CDenmark
  4. 4.Department of MathematicsUniversity of YorkYorkUK

Personalised recommendations