Advertisement

The Ramanujan Journal

, Volume 38, Issue 2, pp 331–347 | Cite as

A discrete version of the Mishou theorem

  • Eugenijus Buivydas
  • Antanas Laurinčikas
Article

Abstract

H. Mishou proved that the Riemann zeta-function and Hurwitz zeta-function with transcendental parameter are jointly universal, i.e., their shifts (continuous) approximate any pair of analytic functions. In the paper, a discrete version of the Mishou theorem is presented. In this case, the parameter of the Hurwitz zeta-function and the step of discrete shifts are connected by a certain independence relation.

Keywords

Algebraically independent numbers Hurwitz zeta-function Joint universality Limit theorem Riemann zeta-function Universality 

Mathematics Subject Classification

11M06 11M35 

References

  1. 1.
    Bagchi, B.: The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series. Ph. D. Thesis, Indian Statistical Institute, Calcutta (1981)Google Scholar
  2. 2.
    Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)Google Scholar
  3. 3.
    Bitar, K.M., Khari, N.N., Ren, H.C.: Path integrals and Voronin’s theorem on the universality of the Riemann zeta-function. Ann. Phys. 211, 172–196 (1991)MATHCrossRefGoogle Scholar
  4. 4.
    Gel’fond, A.O.: On the algebraic independence of transcendental numbers of certain classes. Uspehi Matem. Nauk (N. S.) 4, 5(33), 14–48 (1949) (in Russian)Google Scholar
  5. 5.
    Gonek, S.M.: Analytic properties of zeta and \(L\)-functions. Ph. D. Thesis, University of Michigan (1979)Google Scholar
  6. 6.
    Heyer, H.: Probability Measures on Locally Compact Groups. Springer, Berlin (1977)MATHCrossRefGoogle Scholar
  7. 7.
    Laurinčikas, A.: Limit Theorems for the Riemann Zeta-Function. Kluwer Academic Publishers, Dordrecht (1996)CrossRefGoogle Scholar
  8. 8.
    Laurinčikas, A.: On the joint “universality” of Hurwitz zeta-functions. Šiauliai Math. Semin. 3(11), 169–187 (2008)Google Scholar
  9. 9.
    Laurinčikas, A., Garunkštis, R.: The Lerch Zeta-Function. Kluwer Academic Publishers, Dordrecht (2002)MATHGoogle Scholar
  10. 10.
    Laurinčikas, A., Macaitienė, R.: The discrete universality of the periodic Hurwitz zeta-function. Integral Transf. Spec. Funct. 20(9), 673–686 (2009)MATHCrossRefGoogle Scholar
  11. 11.
    Mergelyan, S.N.: Uniform approximations to functions of a complex variable. Usp. Matem. Nauk 7, 31–122 (1952). (in Russian)MathSciNetGoogle Scholar
  12. 12.
    Mishou, H.: The joint value distribution of the Riemann zeta-function and Hurwitz zeta-functions. Lith. Math. J. 47(1), 32–47 (2007)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Montgomery, H.L.: Topics in Multiplicative Number Theory. Springer, Berlin (1971)MATHCrossRefGoogle Scholar
  14. 14.
    Nesterenko, Y.V.: Modular functions and transcendence questions, Mat. Sb. 187(9), 65–96 (1996) (in Russian) \(\equiv \) Sb. Math., 187(9), 1319–1348 (1996)Google Scholar
  15. 15.
    Reich, A.: Wertverteilung von Zetafunktionen. Arch. Math. 34, 440–451 (1980)MATHCrossRefGoogle Scholar
  16. 16.
    Sander, J., Steuding, J.: Joint “universality” for sums and products of Dirichlet \(L\)-functions. Analysis (Munich) 26(3), 295–312 (2006)MATHMathSciNetGoogle Scholar
  17. 17.
    Steuding, J.: Value-Distribution of \(L\)-functions. Lecture Notes in Math, vol. 1877. Springer, Berlin (2007)Google Scholar
  18. 18.
    Voronin, S.M.: Theorem on the “universality” of the Riemann zeta-function, Izv. Akad. Nauk SSRS, Ser. Matem. 39, 475–486 (1975) (in Russian) \(\equiv \) Math. USSR Izv. 9, 443–453 (1975)Google Scholar
  19. 19.
    Voronin, S.M.: Analytic properties of Dirichlet generating functions of arithmetic objects. Thesis of doctor fiz.-mat. nauk, Steklov Math. Inst, Moscow (1977) (in Russian)Google Scholar
  20. 20.
    Walsh, J.L.: Interpolation and Approximation by Rational Functions on the Complex Domain, vol. 20. Amer. Math. Soc. Colloq. Publ. (1960)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Mathematics and InformaticsŠiauliai UniversityŠiauliaiLithuania
  2. 2.Department of Mathematics and InformaticsVilnius UniversityVilniusLithuania

Personalised recommendations