The Ramanujan Journal

, Volume 35, Issue 1, pp 165–178 | Cite as

Congruences for broken 3-diamond and 7 dots bracelet partitions



Andrews and Paule introduced broken k-diamond partitions by using MacMahon’s partition analysis. Later, Fu found a generalization which he called k dots bracelet partitions. In this paper, with the aid of Farkas and Kra’s partition theorem and a p-dissection identity of f(−q), we derive many congruences for broken 3-diamond partitions and 7 dots bracelet partitions.


Partition Congruence Broken k-diamond partition k dots bracelet partition 

Mathematics Subject Classification (2010)

11P83 05A17 



The authors would like to thank the referee for valuable comments. This work was supported by the National Natural Science Foundation of China and the PCSIRT Project of the Ministry of Education.


  1. 1.
    Andrews, G.E., Paule, P.: MacMahon’s partition analysis XI: broken diamonds and modular forms. Acta Arith. 126, 281–294 (2007) MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Berndt, B.C.: Ramanujan’s Notebooks, Part III. Springer, New York (1991) CrossRefMATHGoogle Scholar
  3. 3.
    Berndt, B.C.: Number Theory in the Spirit of Ramanujan. American Mathematical Society, Providence (2004) MATHGoogle Scholar
  4. 4.
    Cao, Z.: On Somos’ dissection identities. J. Math. Anal. Appl. 365, 659–667 (2010) MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chan, S.H.: Some congruences for Andrews–Paule’s broken 2-diamond partitions. Discrete Math. 308, 5735–5741 (2008) MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chen, W.Y.C., Fan, R.B., Yu, R.T.: Ramanujan-type congruences for broken 2-diamond partitions modulo 3, submitted. arXiv:1304.0661
  7. 7.
    Cui, S.-P., Gu, N.S.S.: Arithmetic properties of -regular partitions. Adv. Appl. Math., in press. doi: 10.1016/j.aam.2013.06.002
  8. 8.
    Cui, S.-P., Gu, N.S.S.: Congruences for k dots bracelet partition functions. Int. J. Number Theory, in press. doi: 10.1142/S1793042113500644
  9. 9.
    Farkas, H.M., Kra, I.: Partitions and theta constant identities. In: Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis. Contemp. Math., vol. 251, pp. 197–203 (2000) CrossRefGoogle Scholar
  10. 10.
    Farkas, H.M., Kra, I.: Theta Constants, Riemann Surfaces and the Modular Group. Graduate Studies in Mathematics, vol. 37. Amer. Math. Soc., Providence (2001) MATHGoogle Scholar
  11. 11.
    Fu, S.: Combinatorial proof of one congruence for the broken 1-diamond partition and a generalization. Int. J. Number Theory 7, 133–144 (2011) MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gasper, G., Rahman, M.: Basic Hypergeometric Series, 2nd edn. Cambridge University Press, Cambridge (2004) CrossRefMATHGoogle Scholar
  13. 13.
    Hirschhorn, M.D.: The case of the mysterious sevens. Int. J. Number Theory 2, 213–216 (2006) MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Hirschhorn, M.D.: The case of the mysterious sevens. Aust. Math. Soc. Gaz. 35, 113–114 (2008) MathSciNetMATHGoogle Scholar
  15. 15.
    Hirschhorn, M.D., Sellers, J.A.: On recent congruence results of Andrews and Paule for broken k-diamonds. Bull. Aust. Math. Soc. 75, 121–126 (2007) MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Jameson, M.: Congruences for broken k-diamond partitions. Ann. Comb. 17, 333–338 (2013) MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Mortenson, E.: On the broken 1-diamond partition. Int. J. Number Theory 4, 199–218 (2008) MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Paule, P., Radu, S.: Infinite families of strange partition congruences for broken 2-diamonds. Ramanujan J. 23, 409–416 (2010) MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Radu, S., Sellers, J.A.: Parity results for broken k-diamond partitions and (2k+1)-cores. Acta Arith. 146, 43–52 (2011) MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Radu, S., Sellers, J.A.: Congruences modulo squares of primes for Fu’s k dots bracelet partitions. Int. J. Number Theory 9, 939–943 (2013) MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Radu, S., Sellers, J.A.: Infinitely many congruences for broken 2-diamond partitions modulo 3. J. Comb. Number Theory 4, 195–200 (2013) MathSciNetMATHGoogle Scholar
  22. 22.
    Radu, S., Sellers, J.A.: An extensive analysis of the parity of broken 3-diamond partitions. J. Number Theory, in press. doi: 10.1016/j.jnt.2013.05.009
  23. 23.
    Warnaar, S.O.: A generalization of the Farkas and Kra partition theorem for modulus 7. J. Comb. Theory, Ser. A 110, 43–52 (2005) MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Xiong, X.: Two congruences involving Andrews–Paule’s broken 3-diamond partitions and 5-diamond partitions. Proc. Jpn. Acad., Ser. A, Math. Sci. 87, 65–68 (2011) CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Center for Combinatorics, LPMC-TJKLCNankai UniversityTianjinP.R. China

Personalised recommendations