The Ramanujan Journal

, Volume 34, Issue 1, pp 143–156 | Cite as

A new generalization of binomial coefficients

  • Michel Lassalle


Let t be a fixed parameter and x some indeterminate. We give some properties of the generalized binomial coefficients \(\genfrac{\langle }{\rangle}{0pt}{}{x}{k}\) inductively defined by \(k/x \genfrac{\langle}{\rangle}{0pt}{}{x}{k}= t\genfrac{\langle}{\rangle}{0pt}{}{x-1}{k-1} +(1-t)\genfrac{\langle}{\rangle}{0pt}{}{x-2}{k-2}\).


Generalized binomial coefficients 

Mathematics Subject Classification

05A10 11B65 



It is a pleasure to thank Christian Krattenthaler for a proof of Theorem 1.


  1. 1.
    Chu, W.: Elementary proofs for convolution identities of Abel and Hagen-Rothe. Electron. J. Comb. 17, N24 (2010) Google Scholar
  2. 2.
    Guo, V.J.W.: Bijective proofs of Gould’s and Rothe’s identities. Discrete Math. 308, 1756–1759 (2008) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Hou, S.J.X., Zeng, J.: Two new families of q-positive integers. Ramanujan J. 14, 421–435 (2007) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Lassalle, M.: Class expansion of some symmetric functions in Jucys–Murphy elements. J. Algebra (2013, to appear). arXiv:1005.2346
  5. 5.
    Lassalle, M.: A new family of positive integers. Ann. Comb. 6, 399–405 (2002) CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Centre National de la Recherche Scientifique, Institut Gaspard-MongeUniversité de Marne-la-ValléeMarne-la-Vallée CedexFrance

Personalised recommendations