Skip to main content
Log in

Poly-Cauchy numbers with a q parameter

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

The concept of poly-Cauchy numbers was recently introduced by the author. The poly-Cauchy number is a generalization of the Cauchy number just as the poly-Bernoulli number is a generalization of the classical Bernoulli number. In this paper we give some more generalizations of poly-Cauchy numbers and show some arithmetical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agoh, T., Dilcher, K.: Shortened recurrence relations for Bernoulli numbers. Discrete Math. 309, 887–898 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agoh, T., Dilcher, K.: Recurrence relations for Nörlund numbers and Bernoulli numbers of the second kind. Fibonacci Q. 48, 4–12 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Bayad, A., Hamahata, Y.: Polylogarithms and poly-Bernoulli polynomials. Kyushu J. Math. 65, 15–24 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bayad, A., Hamahata, Y.: Arakawa–Kaneko L-functions and generalized poly-Bernoulli polynomials. J. Number Theory 131, 1020–1036 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brewbaker, C.: A combinatorial interpretation of the poly-Bernoulli numbers and two Fermat analogues. Integers 8, #A02 (2008)

    MathSciNet  Google Scholar 

  6. Cheon, G.-S., Hwang, S.-G., Lee, S.-G.: Several polynomials associated with the harmonic numbers. Discrete Appl. Math. 155, 2573–2584 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Comtet, L.: Advanced Combinatorics. Reidel, Dordrecht (1974)

    Book  MATH  Google Scholar 

  8. Coppo, M.-A., Candelpergher, B.: The Arakawa–Kaneko zeta functions. Ramanujan J. 22, 153–162 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  10. Hamahata, Y., Masubuchi, H.: Special multi-poly-Bernoulli numbers. J. Integer Seq. 10, Article 07.4.1 (2007)

    MathSciNet  Google Scholar 

  11. Hamahata, Y., Masubuchi, H.: Recurrence formulae for multi-poly-Bernoulli numbers. Integers 7, #A46 (2007)

    MathSciNet  Google Scholar 

  12. Hassen, A., Nguyen, H.D.: Hypergeometric Bernoulli polynomials and Appell sequences. Int. J. Number Theory 4, 767–774 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hassen, A., Nguyen, H.D.: Hypergeometric zeta functions. Int. J. Number Theory 6, 99–126 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jolany, H.: Explicit formula for generalization of poly-Bernoulli numbers and polynomials with a, b, c parameters. http://arxiv.org/pdf/1109.1387v1.pdf

  15. Kamano, K.: Sums of products of Bernoulli numbers, including poly-Bernoulli numbers. J. Integer Seq. 13, Article 10.5.2 (2010)

    MathSciNet  Google Scholar 

  16. Kaneko, M.: Poly-Bernoulli numbers. J. Théor. Nr. Bordx. 9, 199–206 (1997)

    Article  Google Scholar 

  17. Komatsu, T.: Poly-Cauchy numbers. Kyushu J. Math. (to appear)

  18. Kamano, K., Komatsu, T.: Poly-Cauchy polynomials. Preprint

  19. Komatsu, T.: Hypergeometric Cauchy numbers. Int. J. Number Theory (to appear). doi:10.1142/S1793042112501473

  20. Liu, H.-M., Qi, S.-H., Ding, S.-Y.: Some recurrence relations for Cauchy numbers of the first kind. J. Integer Seq. 13, Article 10.3.8 (2010)

    MathSciNet  Google Scholar 

  21. Merlini, D., Sprugnoli, R., Verri, M.C.: The Cauchy numbers. Discrete Math. 306, 1906–1920 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sasaki, Y.: On generalized poly-Bernoulli numbers and related L-functions. J. Number Theory 132, 156–170 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, W.: Generalized higher order Bernoulli number pairs and generalized Stirling number pairs. J. Math. Anal. Appl. 364, 255–274 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Young, P.T.: A 2-adic formula for Bernoulli numbers of the second kind and for the Nörlund numbers. J. Number Theory 128, 2951–2962 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhao, F.-Z.: Sums of products of Cauchy numbers. Discrete Math. 309, 3830–3842 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks the referee for many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Komatsu.

Additional information

This work was supported in part by the Grant-in-Aid for Scientific research (C) (No. 22540005), the Japan Society for the Promotion of Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komatsu, T. Poly-Cauchy numbers with a q parameter. Ramanujan J 31, 353–371 (2013). https://doi.org/10.1007/s11139-012-9452-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-012-9452-0

Keywords

Mathematics Subject Classification

Navigation