Advertisement

The Ramanujan Journal

, Volume 26, Issue 3, pp 323–367 | Cite as

On some continued fraction expansions of the Rogers–Ramanujan type

  • Nancy S. S. Gu
  • Helmut Prodinger
Article

Abstract

By guessing the relative quantities and proving the recursive relation, we present some continued fraction expansions of the Rogers–Ramanujan type. Meanwhile, we also give some J-fraction expansions for the q-tangent and q-cotangent functions.

Keywords

Continued fraction Rogers–Ramanujan type q-tangent function q-cotangent function 

Mathematics Subject Classification

33D15 11A55 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, G.E.: On q-difference equations for certain well-poised basic hypergeometric series. Q. J. Math. (Oxford) 19, 433–447 (1968) MATHCrossRefGoogle Scholar
  2. 2.
    Andrews, G.E.: An introduction to Ramanujan’s “lost” notebook. Am. Math. Mon. 86, 89–108 (1979) MATHCrossRefGoogle Scholar
  3. 3.
    Andrews, G.E.: Ramunujan’s “lost” notebook III. The Rogers-Ramanujan continued fraction. Adv. Math. 41, 186–208 (1981) MATHCrossRefGoogle Scholar
  4. 4.
    Andrews, G.E., Berndt, B.C., Jacobsen, L., Lamphere, R.L.: The Continued Fractions Found in the Unorganized Portions of Ramanujan’s Notebooks. Memoirs Amer. Math. Soc., vol. 477. Am. Math. Soc., Providence (1992) Google Scholar
  5. 5.
    Andrews, G.E., Berndt, B.C.: Ramanujan’s Lost Notebook, Part I. Springer, New York (2005) Google Scholar
  6. 6.
    Berndt, B.C.: Ramanujan’s Notebooks, Part V. Springer, New York (1998) MATHCrossRefGoogle Scholar
  7. 7.
    Bhargava, S., Adiga, C.: On some continued fraction identities of Srinivasa Ramanujan. Proc. Am. Math. Soc. 92, 13–18 (1984) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bowman, D., Mc Laughlin, J., Wyshinski, N.J.: A q-continued fraction. Int. J. Number Theory 2, 523–547 (2006) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bowman, D., Mc Laughlin, J., Wyshinski, N.J.: Continued fraction proofs of m-versions of some identities of Rogers-Ramanujan-Slater type. Ramanujan J. 25, 203–227 (2011) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Chan, H.H., Huang, S.-S.: On the Ramanujan-Gordon-Göllnitz continued fraction. Ramanujan J. 1, 75–90 (1997) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Fulmek, M.: A continued fraction expansion for a q-tangent function. Sémin. Lothar. Comb. 45 [B45b] (2000) MathSciNetGoogle Scholar
  12. 12.
    Gasper, G., Rahman, M.: Basic Hypergeometric Series, 2nd edn. Cambridge University Press, Cambridge (2004) MATHCrossRefGoogle Scholar
  13. 13.
    Gordon, B.: Some continued fractions of the Rogers-Ramanujan type. Duke Math. J. 32, 741–748 (1965) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Hirschhorn, M.D.: A continued fraction. Duke Math. J. 41, 27–33 (1974) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Hirschhorn, M.D.: Developments in Theory of Partitions. PhD Thesis, University of New South Wales (1980) Google Scholar
  16. 16.
    Hirschhorn, M.D.: A continued fraction of Ramanujan. J. Aust. Math. Soc. A 29, 80–86 (1980) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Jackson, F.H.: A basic-sine and cosine with symbolic solutions of certain differential equations. Proc. Edinb. Math. Soc. 22, 28–39 (1904) MATHCrossRefGoogle Scholar
  18. 18.
    Jackson, F.H.: Examples of a generalization of Euler’s transformation for power series. Messenger Math. 57, 169–187 (1928) Google Scholar
  19. 19.
    Jones, W.B., Thron, W.J.: Continued Fractions. Analytic Theory and Applications. Addison-Wesley, Reading (1980) Google Scholar
  20. 20.
    Khovanskii, A.N.: The Application of Continued Fractions and Their Generalizations to Problems in Approximation Theory. Noordhoff, Groningen (1963) Google Scholar
  21. 21.
    Lebesgue, V.A.: Sommation de quelques séries. J. Math. Pures Appl. 5, 42–71 (1840) Google Scholar
  22. 22.
    Matala-aho, T.: On the values of continued fractions: q-series. J. Approx. Theory 124, 139–153 (2003) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Matala-aho, T., Meril, V.: On the values of continued fractions: q-series. II. Int. J. Number Theory 2, 417–430 (2006) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Mc Laughlin, J., Sills, A., Zimmer, P.: Rogers-Ramanujan computer searches. J. Symb. Comput. 44, 1068–1078 (2009) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Prodinger, H.: Combinatorics of geometrically distributed random variables: new q-tangent and q-secant numbers. Int. J. Math. Math. Sci. 24, 825–838 (2000) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Prodinger, H.: A continued fraction expansion for a q-tangent function: an elementary proof. Sémin. Lothar. Comb. 60 [B60b] (2008) MathSciNetGoogle Scholar
  27. 27.
    Prodinger, H.: Continued fraction expansions for q-tangent and q-cotangent functions. Discrete Math. Theor. Comput. Sci. 12, 47–64 (2010) MathSciNetMATHGoogle Scholar
  28. 28.
    Ramanathan, K.G.: Ramanujan’s continued fraction. Indian J. Pure Appl. Math. 16, 695–724 (1985) MathSciNetMATHGoogle Scholar
  29. 29.
    Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Narosa, New Delhi (1988) MATHGoogle Scholar
  30. 30.
    Rogers, L.J.: Second memoir on the expansion of certain infinite products. Proc. Lond. Math. Soc. 25, 318–343 (1894) CrossRefGoogle Scholar
  31. 31.
    Selberg, A.: Über einige arithmetische Identitäten. Avh. - Nor. Vidensk.-Akad. Oslo, I Mat.-Naturv. Kl. 8, 3–23 (1936) Google Scholar
  32. 32.
    Selberg, A.: Collected Papers, vol. I. Springer, Berlin, (1989) Google Scholar
  33. 33.
    Shin, H., Zeng, J.: The q-tangent and q-secant numbers via continued fractions. Eur. J. Comb. 31, 1689–1705 (2010) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Sills, A.: Finite Rogers-Ramanujan type identities. Electron. J. Comb. 10, R13 (2003) MathSciNetGoogle Scholar
  35. 35.
    Slater, L.J.: Further identities of the Rogers-Ramanujan type. Proc. Lond. Math. Soc. 54, 147–167 (1952) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Center for Combinatorics, LPMC-TJKLCNankai UniversityTianjinP.R. China
  2. 2.Department of MathematicsUniversity of StellenboschStellenboschSouth Africa

Personalised recommendations