The Ramanujan Journal

, 26:133

# A generalization of Clausen’s identity

• Raimundas Vidunas
Article

## Abstract

The paper gives an extension of Clausen’s identity to the square of any Gauss hypergeometric function. Accordingly, solutions of the related third-order linear differential equation are found in terms of certain bivariate series that can reduce to 3F2 series similar to those in Clausen’s identity. The general contiguous variation of Clausen’s identity is found as well. The related Chaundy’s identity is generalized without any restriction on the parameters of the Gauss hypergeometric function. The special case of dihedral Gauss hypergeometric functions is underscored.

## Keywords

Gauss hypergeometric function Bivariate hypergeometric series

## Mathematics Subject Classification (2000)

33C05 33C65 32A10

## References

1. 1.
Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge Univ. Press, Cambridge (1999)
2. 2.
Bailey, W.N.: A reducible case of the fourth type of Appell’s hypergeometric functions of two variables. Q. J. Math. 4, 305–308 (1933)
3. 3.
Chaundy, W.: On Clausen’s hypergeometric identity. Q. J. Math. 9, 265–274 (1958)
4. 4.
Clausen, T.: Ueber die Fälle, wenn die Reihe von der Form $$y=1+\frac{\alpha}{1}\cdot\frac{\beta}{\gamma}x +\frac{\alpha\cdot\alpha+1}{1\cdot2}\cdot \frac{\beta\cdot\beta+1}{\gamma\cdot\gamma+1}x^{2}+\mbox{etc.}$$ ein quadrat von der Form $$z=1+\frac{\alpha'}{1}\cdot\frac{\beta'}{\gamma'}\cdot \frac{\delta'}{\epsilon'}x+\frac{\alpha'\cdot\alpha'+1}{1\cdot2}\cdot\frac{\beta'\cdot\beta'+1}{\gamma'\cdot\gamma'+1}\cdot\frac{\delta'\cdot\delta'+1}{\epsilon'\cdot\epsilon'+1}x^{2}+\mbox{etc.}$$ hat. J. Reine Angew. Math. 3, 89–91 (1828)
5. 5.
Lanfear, N., Suslov, S.: The time-dependent Schroedinger equation, Riccati equation and airy functions. Available at arXiv:0903.3608 (2009)
6. 6.
Vidunas, R.: Specialization of Appell’s functions to univariate hypergeometric functions. J. Math. Anal. Appl. 355, 145–163 (2009). Available at arXiv:0804.0655
7. 7.
Vidunas, R.: On singular univariate specializations of bivariate hypergeometric functions. J. Math. Anal. Appl. 365, 135–141 (2010). Available at arXiv:0906.1861
8. 8.
Vidunas, R.: Transformations and invariants for dihedral Gauss hypergeometric functions. Kyushu J. Math. 66(1) (2012, in press). Available at arXiv:1101.3688