Advertisement

The Ramanujan Journal

, Volume 27, Issue 2, pp 151–162 | Cite as

Pullbacks of Siegel Eisenstein series and weighted averages of critical L-values

  • Nadine Amersi
  • Jeffrey Beyerl
  • Jim Brown
  • Allison Proffer
  • Larry Rolen
Article
  • 76 Downloads

Abstract

In this paper we obtain a weighted average formula for special values of L-functions attached to normalized elliptic modular forms of weight k and full level. These results are obtained by studying the pullback of a Siegel Eisenstein series and working out an explicit spectral decomposition.

Keywords

Special values of L-functions Pullbacks of Eisenstein series 

Mathematics Subject Classification (2000)

11F67 11F46 11F30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Böcherer, S.: Uber das Verhalten der Fourierentwicklung bei Liflung von Modulformen. PhD thesis, Albert-Ludwigs-Universität Freiburg im Breisgau, Freiburg (1981) Google Scholar
  2. 2.
    Böcherer, S.: Über die Funktionalgleichung automorpher L-Funktionen zur Siegelscher Modulgruppe. J. Reine Angew. Math. 362, 146–168 (1985) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Brown, J.: On the cuspidality of pullbacks of Siegel Eisenstein series to Sp(2m)×Sp(2n). J. Number Theory 131, 106–119 (2011) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Cohen, H.: Sums involving the values at negative integers of L-functions of quadratic characters. Math. Ann. 217, 271–285 (1975) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Eichler, M., Zagier, D.: The Theory of Jacobi Forms. Prog. in Math, vol. 55. Birkhäuser, Boston (1985) MATHGoogle Scholar
  6. 6.
    Garrett, P.: Pullbacks of Eisenstein series; Applications. In: Automorphic Forms of Several Variables, Katata, 1983. Prog. in Math., vol. 46, pp. 114–137. Birkhäuser, Boston (1984) Google Scholar
  7. 7.
    Garrett, P.: Decomposition of Eisenstein series: Rankin triple products. Math. Ann. 125(2), 209–235 (1987) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Geer, G.: Siegel modular forms and their applications. In: Ranestad, K. (ed.) The 1-2-3 of Modular Forms. Universitext, vol. 44, pp. 181–245. Springer, Berlin (2008) CrossRefGoogle Scholar
  9. 9.
    Heim, B.: Congruences for the Ramanujan function and generalized class numbers. Math. Comput. 78(265), 431–439 (2009) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Klingen, H.: Introductory Lectures on Siegel Modular Forms. Cambridge Studies in Advanced Mathematics, vol. 20. Cambridge Univ. Press, Cambridge (1996) Google Scholar
  11. 11.
    Kohnen, W.: A Short Course on Siegel Modular Forms. POSTECH Lecture Series (2007) Google Scholar
  12. 12.
    Lanphier, D.: Values of symmetric cube L-functions and Fourier coefficients of Siegel Eisenstein series of degree-3. Math. Comput. (2010). doi: 0025-5718(10)02350-1 Google Scholar
  13. 13.
    Manin, J.I.: Periods of parabolic forms and p-adic Hecke series. Math. USSR Sb. 21(3), 371–393 (1973) CrossRefGoogle Scholar
  14. 14.
    Mizumoto, S.: Fourier coefficients of generalized Eisenstein series of degree two. Invent. Math. 65, 115–135 (1981) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Shimura, G.: On the periods of modular forms. Math. Ann. 229, 211–221 (1977) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Zagier, D.: Modular Forms Whose Fourier Coefficients Involve Zeta-Functions of Quadratic Fields. Lect. Notes in Math., vol. 627. Springer, Berlin (1977) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nadine Amersi
    • 1
  • Jeffrey Beyerl
    • 2
  • Jim Brown
    • 2
  • Allison Proffer
    • 3
  • Larry Rolen
    • 4
  1. 1.Department of MathematicsUniversity College LondonLondonUK
  2. 2.Department of Mathematical SciencesClemson UniversityClemsonUSA
  3. 3.Department of Mathematics and Applied MathematicsVirginia Commonwealth UniversityRichmondUSA
  4. 4.Department of MathematicsUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations