Skip to main content
Log in

Fractional sums and Euler-like identities

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We introduce a natural definition for sums of the form

$$\sum_{\nu=1}^xf(\nu)$$

when the number of terms x is a rather arbitrary real or even complex number. The resulting theory includes the known interpolation of the factorial by the Γ function or Euler’s little-known formula \(\sum_{\nu=1}^{-1/2}\frac{1}{\nu}=-2\ln 2\) .

Many classical identities like the geometric series and the binomial theorem nicely extend to this more general setting. Sums with a fractional number of terms are closely related to special functions, in particular the Riemann and Hurwitz ζ functions. A number of results about fractional sums can be interpreted as classical infinite sums or products or as limits, including identities like

$$\begin{array}{l}\displaystyle\lim_{n\to\infty}\Biggl[e^{\frac{n}{4}(4n+1)}n^{-\frac{1}{8}-n(n+1)}(2\pi)^{-\frac{n}{2}}\prod_{k=1}^{2n}\Gamma\biggl(1+\frac{k}{2}\biggr)^{k(-1)^k}\Biggr]\\[12pt]\quad =\displaystyle\sqrt[12]{2}\exp\biggl(\frac{5}{24}-\frac{3}{2}\zeta'(-1)-\frac{7\zeta(3)}{16\pi^2}\biggr),\end{array}$$

some of which seem to be new; and even for those which are known, our approach provides a new method to derive these identities and many others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1974)

    Google Scholar 

  2. Adamchik, V.S.: The multiple Gamma function and its application to computation of series. Ramanujan J. 9(3), 271–288 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berndt, B.: Ramanujan’s Notebooks, Part I. Springer, New York (1989)

    Google Scholar 

  4. Borwein, P., Dykshoorn, W.: An interesting infinite product. J. Math. Anal. Appl. 179(1), 203–207 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Conway, J.B.: Functions of One Complex Variable I. Springer, New York (1978)

    Google Scholar 

  6. Euler, L.: Dilucidationes in capita postrema calculi mei differentialis de functionibus inexplicabilibus, 2nd edn. Commentatio 613 Indicis Enestroemiani. Mémoires de l’Académie des Sciences de St.-Petersbourg, vol. 4, pp. 88–119 (1813)

  7. Gosper, R.W., Ismail, M.E.H., Zhang, R.: On some strange summation formulas. Ill. J. Math. 37(2), 240–277 (1993)

    MATH  MathSciNet  Google Scholar 

  8. Müller, M., Schleicher, D.: How to add a non-integer number of terms, and how to produce unusual infinite summations. J. Comput. Appl. Math. 178(1–2), 347–360 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Müller, M., Schleicher, D.: How to add a non-integer number of terms: from axioms to new identities. Manuscript (in preparation)

  10. Spanier, J., Oldham, K.B.: An Atlas of Functions. Springer, Berlin (1987)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dierk Schleicher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, M., Schleicher, D. Fractional sums and Euler-like identities. Ramanujan J 21, 123–143 (2010). https://doi.org/10.1007/s11139-009-9214-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-009-9214-9

Mathematics Subject Classification (2000)

Navigation