Skip to main content
Log in

New finite Rogers-Ramanujan identities

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We present two general finite extensions for each of the two Rogers-Ramanujan identities. Of these one can be derived directly from Watson’s transformation formula by specialization or through Bailey’s method, the second similar formula can be proved either by using the first formula and the q-Gosper algorithm, or through the so-called Bailey lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, A., Andrews, G.E., Bressoud, D.: The Bailey lattice. J. Indian Math. Soc. 51, 57–73 (1987)

    MATH  MathSciNet  Google Scholar 

  2. Andrews, G.E.: A polynomial identity which implies the Rogers-Ramanujan identities. Scr. Math. 28, 297–305 (1970)

    Google Scholar 

  3. Andrews, G.E.: Problem 74-12. SIAM Rev. 16, 390 (1974)

    Article  Google Scholar 

  4. Andrews, G.E.: The Theory of Partitions. Encyclopedia of Mathematics and Its Applications, vol. 2, Rota, G.-C. (ed.). Addison-Wesley, Reading (1976) (reissued: Cambridge University Press, London, 1985)

    MATH  Google Scholar 

  5. Andrews, G.E.: q-Series: Their Development and Application in Analysis, Combinatorics, Physics, and Computer Algebra. CBMS Regional Conference Series, vol. 66. Am. Math. Soc., Providence (1986)

    Google Scholar 

  6. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  7. Bailey, W.N.: Identities of the Rogers-Ramanujan type. Proc. Lond. Math. Soc.(2) 50, 1–10 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  8. Berkovich, A., Warnaar, S.O.: Positivity preserving transformations for q-binomial coefficients. Trans. Am. Math. Soc. 357, 2291–2351 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bressoud, D.M.: Solution of Problem 74-12. SIAM Rev. 23, 101–104 (1981)

    Article  Google Scholar 

  10. Bressoud, D.M.: Some identities for terminating q-series. Math. Proc. Camb. Philos. Soc. 89, 211–223 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ekhad, S.B., Tre, S.: A purely verification proof of the first Rogers-Ramanujan identity. J. Comb. Theory Ser. A 54, 309–311 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gasper, G., Rahman, M.: Basic Hypergeometric Series, 2nd edn. Encyclopedia of Mathematics and Its Applications, vol. 96. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  13. Guo, V.J.W., Jouhet, F., Zeng, J.: Factors of alternating sums of products of binomial and q-binomial coefficients. Acta Arith. 127, 17–31 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Liu, Z.-G.: Some operator identities and q-series transformation formulas. Discrete Math. 265, 119–139 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Paule, P.: The concept of Bailey chains. Séminaire Lotharingien de Combinatoire, vol. 18, B18f (1987), 24 pp

  16. Paule, P.: Short and easy computer proofs of the Rogers-Ramanujan identities and of identities of similar type. Electron. J. Comb. 1, #R10 (1994)

    MathSciNet  Google Scholar 

  17. Schilling, A., Warnaar, S.O.: A higher level Bailey lemma: Proof and application. Ramanujan J. 2, 327–349 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Schur, I.: Ein Beitrag zur additeven Zahlentheorie und zur Theorie der Kettenbrüche. In: Sitzungsberichte der Berliner Akademie, pp. 302–321 (1917)

  19. Sills, A.V.: Finite Rogers-Ramanujan type identities. Electron. J. Comb. 10, #R13 (2003)

    MathSciNet  Google Scholar 

  20. Warnaar, S.O.: 50 years of Bailey’s lemma. In: Betten, A., et al. (eds.) Algebraic Combinatorics and Applications, pp. 333–347. Springer, Berlin (2001)

    Google Scholar 

  21. Warnaar, S.O.: Partial-sum analogues of the Rogers-Ramanujan identities. J. Comb. Theory Ser. A 99, 143–161 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Watson, G.N.: A new proof of the Rogers-Ramanujan identities. J. Lond. Math. Soc. 4, 4–9 (1929)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor J. W. Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, V.J.W., Jouhet, F. & Zeng, J. New finite Rogers-Ramanujan identities. Ramanujan J 19, 247–266 (2009). https://doi.org/10.1007/s11139-009-9182-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-009-9182-0

Keywords

Mathematics Subject Classification (2000)

Navigation