Advertisement

The Ramanujan Journal

, Volume 19, Issue 1, pp 71–77 | Cite as

Quadratic fields with noncyclic 5- or 7-class groups

  • Dongho Byeon
Article
  • 44 Downloads

Abstract

We shall show that the number of quadratic fields with absolute discriminant ≤x and noncyclic 5- or 7-class group is ≫x 1/4 improving the existing known bound \(\gg x^{\frac{1}{5}-\epsilon}\) for g=5 and \(\gg x^{\frac{1}{7}-\epsilon}\) for g=7 in Byeon (Ramanujan J. 11:159–163, 2006).

Keywords

Noncyclic ideal class groups Quadratic fields 

Mathematics Subject Classification (2000)

11R11 11R29 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Byeon, D.: Imaginary quadratic fields with noncyclic ideal class groups. Ramanujan J. 11, 159–163 (2006) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Byeon, D.: Real quadratic fields with class number divisible by 5 or 7. Manuscr. Math. 120, 211–215 (2006) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cohen, H., Lenstra, H.W.: Heuristics on class groups of number fields. In: Number Theory (Noordwijkerhout 1983). Lecture Notes in Math., vol. 1068, pp. 33–62. Springer, New York (1983) CrossRefGoogle Scholar
  4. 4.
    Craig, M.: A construction for irregular discriminants. Osaka J. Math. 14, 365–402 (1977) MATHMathSciNetGoogle Scholar
  5. 5.
    Luca, F., Pacelli, A.: Class groups of quadratic fields of 3-rank at least 2: Effective bounds. Preprint Google Scholar
  6. 6.
    Mazur, B.: Modular curves and the Eisenstein ideal. Inst. Hautes Étud. Sci. Publ. Math. 47, 33–186 (1978) CrossRefGoogle Scholar
  7. 7.
    Mestre, J.-F.: Courbes elliptiques et groupes de classes d’idéaux de certains corps quadratiques. J. Reine Angew. Math. 343, 23–35 (1983) MATHMathSciNetGoogle Scholar
  8. 8.
    Murty, M.R.: Exponents of class groups of quadratic fields. In: Topics in Number Theory. Mathematical Applications, vol. 467, pp. 229–239. Kluwer Academic, Dordrecht (1999) Google Scholar
  9. 9.
    Schoof, R.J.: Class groups of complex quadratic fields. Math. Comput. 4, 295–302 (1983) MathSciNetGoogle Scholar
  10. 10.
    Soundararajan, K.: Divisibility of class numbers of imaginary quadratic fields. J. Lond. Math. Soc. 61, 681–690 (2000) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Stewart, C.L., Top, J.: On ranks of twists of elliptic curves and power-free values of binary forms. J. Am. Math. Soc. 8, 943–973 (1995) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Yamamoto, Y.: On ramified Galois extensions of quadratic number fields. Osaka J. Math. 7, 57–76 (1970) MATHMathSciNetGoogle Scholar
  13. 13.
    Yu, G.: A note on the divisibility of class numbers of real quadratic fields. J. Number Theory 97, 35–44 (2002) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of MathematicsSeoul National UniversitySeoulKorea

Personalised recommendations