The Ramanujan Journal

, Volume 16, Issue 1, pp 7–24 | Cite as

A new method in the study of Euler sums



A new method in the study of Euler sums is developed. A host of Euler sums, typically of the form \(\sum_{n=1}^{\infty}\frac{f(n)}{n^{s}}\sum_{m=1}^{n}\frac{g(m)}{m^{t}}\) , are expressed in closed form. Also obtained as a by-product, are some striking recursive identities involving several Dirichlet series including the well-known Riemann Zeta-function.


Riemann Zeta function Euler sums Recursions formulas 

Mathematics Subject Classification (2000)

40A25 40B05 11M99 33E99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apostol, T.M., Vu, T.H.: Dirichlet Series related to the Riemann Zeta function. J. Number Theory 19, 85–120 (1984) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bailey, D.H., Borwein, J.M., Girgensohn, R.: Experimental evaluation of Euler sums. Exp. Math. 3, 17–30 (1994) MATHMathSciNetGoogle Scholar
  3. 3.
    Basu, A., Apostol, Tom M.: A new method for investigating Euler sums. Ramanujan J. 4, 397–419 (2000) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Crandall, R.E., Buhler, J.P.: On the evaluation Euler sums. Exp. Math. 3, 275–285 (1994) MATHMathSciNetGoogle Scholar
  5. 5.
    Ramanujan, S.: Note Books, vol. 2 (1957) Google Scholar
  6. 6.
    Williams, G.T.: A method of evaluating ζ(2n). Am. Math. Mon. 60, 19–25 (1953) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.C/o Ranjit BasuChandannagar, Dist. HooghlyIndia

Personalised recommendations