The Ramanujan Journal

, Volume 15, Issue 1, pp 19–30 | Cite as

On pseudorandom properties of some Dirichlet characters

  • Shea-Ming Oon


In this paper, we try to generalize the Mauduit–Sárközy pseudorandom properties of the Legendre symbol to Dirichlet characters. We prove that in our construction the well-distribution and correlation measures are as “small” as in the case of the Legendre symbol. Furthermore we provide with sufficient conditions to ensure the coincidence of two binary sequences using the Legendre symbol.


Pseudorandom Binary sequence Correlation Dirichlet’s characters 

Mathematics Subject Classification (2000)

11K45 11L40 11K36 11T24 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlswede, R., Khachatrian, L.H., Mauduit, C., Sarkozy, A.: A complexity measure for families of binary sequences. Period. Math. Hung. 46(2), 107–118 (2003) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cassaigne, J., Mauduit, C., Sárközy, A.: On finite pseudorandom binary sequences VII: the measures of pseudorandomness. Acta Arith. 103(2), 97–118 (2002) MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Davenport, H.: Multiplicative Number Theory (revised by Montgomery, H.L.). Springer, New York (1980) Google Scholar
  4. 4.
    Fouvry, E., Michel, P., Rivat, J., Sárközy, A.: On the pseudorandomness of the signs of Kloosterman sums. J. Aust. Math. Soc. 77(3), 425–436 (2004) MATHMathSciNetGoogle Scholar
  5. 5.
    Goubin, L., Mauduit, C., Sárközy, A.: Construction of large families of pseudorandom binary sequences. J. Number Theory 106(1), 56–69 (2004) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Mauduit, C., Sárközy, A.: On finite pseudorandom binary sequences I: Measure of pseudorandomness, the Legendre symbol. Acta Arith. 82, 365–377 (1997) MATHMathSciNetGoogle Scholar
  7. 7.
    Schmidt, W.: Equations over Finite Fields: an Elementary Approach. Lecture Notes in Mathematics, vol. 536. Springer, New York (1976) MATHGoogle Scholar
  8. 8.
    Sárközy, A.: A finite pseudorandom binary sequence. Studia Sci. Math. Hung. 38, 377–384 (2001) MATHGoogle Scholar
  9. 9.
    Vaaler, J.D.: Some extremal functions in Fourier analysis. Bull. Am. Math. Soc. 12(2), 183–216 (1985) MATHMathSciNetGoogle Scholar
  10. 10.
    Weil, A.: Sur les Courbes Algébriques et les Variétés Qui s’en Déduisent. Act. Sci. Ind., vol. 1041. Hermann, Paris (1948) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institut Elie Cartan de NancyUniversité Henri PoincaréVandœuvre-lès-Nancy CedexFrance

Personalised recommendations