Advertisement

The Ramanujan Journal

, Volume 14, Issue 1, pp 79–88 | Cite as

A generalization of an integral of Ramanujan

  • Jeffrey L. Meyer
Article
  • 70 Downloads

Abstract

This paper considers a generalization of an integral introduced by S. Ramanujan in his third notebook. Ramanujan’s integral is itself a version of the dilogarithm,
$$Li_2(z) =-\int_{0}^{z}\frac{\log(1-x)}{x} \,\,dx.$$
We prove various functional equations and properties of the generalized integral.

Keyword

Dilogarithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berndt, B.C., Evans, R.J.: An integral functional equation of Ramanujan related to the dilogarithm. In: Mollin, R.A. (ed.) Number Theory de Gruyter pp. 1–5, Berlin, (1990)Google Scholar
  2. 2.
    Lewin, L.: Polylogarithms and Associated Functions. North-Holland, New York (1985)Google Scholar
  3. 3.
    Ramanujan, S.: Notebooks (2 vol.), Tata Institute of Fundamental Research, Bombay (1957)Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Syracuse UniversitySyracuseUSA

Personalised recommendations