Advertisement

Radiochemistry

, Volume 47, Issue 2, pp 153–156 | Cite as

Thermolysis of Urea Complexes of Uranyl Nitrate

  • N. N. Kostyuk
Article

Abstract

Quantitative parameters of thermolysis of uranyl nitrate urea complexes, [UO2(NO3)2{(NH2)2·CO}2], [UO2(H2O){(NH2)2CO}4](NO3)2, and [UO2(H2O){(NH2)2CO}5](NO3)2 at 175, 200, and 225°C were measured. Thermolysis of [UO2(NO3)2{(NH2)2CO}2] at 200°C affords the biuret complex of uranyl nitrate in a 90% yield. The urea ligands in the hydrated complexes completely transform into biuret at 175°C. Thermolysis of [UO2(H2O){(NH2)2CO}5](NO3)2 yields the biuret-cyanurate complexes of uranyl nitrate. The features of thermolysis of the uranyl nitrate complexes originate from the chemical transformations of urea at elevated temperatures.

Keywords

Nitrate Hydrated Urea Elevated Temperature Uranyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Watt, G.W. and Machel, A.R., J. Am. Chem. Soc., 1950, vol. 72, no.6, p. 2801.CrossRefGoogle Scholar
  2. 2.
    Gentile, P.S. and Talley, L.H., J. Am. Chem. Soc., 1957, vol. 79, no.22, p. 5889.CrossRefGoogle Scholar
  3. 3.
    Markov, V.P. and Tsapkina, I.V., Zh. Neorg. Khim., 1959, vol. 4, no.10, p. 2255.Google Scholar
  4. 4.
    Siracusa, G., Seminara, A., Cucinota, V., and Gurrieri, S., Thermochim. Acta, 1978, vol. 23, no.1, p. 109.Google Scholar
  5. 5.
    Siracusa, G. and Abate, L., Thermochim. Acta, 1980, vol. 36, no.2, p. 207.CrossRefGoogle Scholar
  6. 6.
    Kobets, L.V., Kostyuk, N.N., and Umreiko, D.S., Zh. Neorg. Khim., 1987, vol. 32, no.11, p. 2747.Google Scholar
  7. 7.
    Kostyuk, N.N. and Umreiko, D.S., Zh. Neorg. Khim., 1990, vol. 35, no.4, p. 987.Google Scholar
  8. 8.
    Filippov, E.A., Papkov, A.S., and Kokorin, I.I., Radiokhimiya, 1980, vol. 22, no.3, p. 17.Google Scholar
  9. 9.
    Pronin, I.S., Vashman, A.A., and Markov, V.M., Radiokhimiya, 1981, vol. 23, no.6, p. 916.Google Scholar
  10. 10.
    Zotov, A.T., Mochevina (Urea), Moscow: Nauka, 1963, pp. 39–47.Google Scholar
  11. 11.
    Kobets, L.V. and Kostyuk, N.N., Zh. Neorg. Khim., 1987, vol. 32, no.4, p. 1057.Google Scholar
  12. 12.
    Dalley, N.K., Mueller, M.H., and Simonsen, S.H., Inorg. Chem., 1972, vol. 11, no.8, p. 1840.CrossRefGoogle Scholar
  13. 13.
    Zalkin, A., Ruben, H., and Tempelton, D.H., Inorg. Chem., 1979, vol. 18, no.2, p. 519.CrossRefGoogle Scholar
  14. 14.
    Nakanishi, K., Infrared Absorption Spectroscopy, Tokyo: Nankido, 1962. Translated under the title Infrakrasnye spektry i stroenie organicheskikh soedinenii, Moscow: Mir, 1965, p. 57.Google Scholar
  15. 15.
    Dik, T.A., Kostyuk, N.N., Nikanovich, M.V., and Umreiko, D.S., Zh. Prikl. Spektrosk., 1987, vol. 47, no.3, p. 436.Google Scholar
  16. 16.
    Khimicheskaya entsiklopediya (Chemical Encyclopedia), Moscow: Bol’shaya Rossiiskaya Entsiklopediya, 1992, vol. 3, p. 280.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • N. N. Kostyuk
    • 1
  1. 1.Sevchenko Institute of Applied Physical ProblemsBelarussian State UniversityMinskBelarus

Personalised recommendations