Using confirmatory factor analysis and Rasch analysis to examine the dimensionality of The Patient Assessment of Care for Chronic Illness Care (PACIC)

Abstract

Purpose

The PACIC assesses key components of the Chronic Care Model. The purpose of this study is to examine the dimensionality and psychometric properties of the PACIC.

Methods

A convenience sample of 221 adults in Canada who self-identified as living with one or more physical and/or mental chronic diseases was invited to participate via an online survey link. Rasch analysis was performed, including item and person misfit, reliability, response format, targeting, unidimensionality of subscales, and differential item functioning (DIF). Also, Confirmatory Factor Analysis (CFA) was conducted and model fit of alternative factor structures proposed for the PACIC in the literature and those suggested by the Rasch analysis were explored.

Results

The patient activation, delivery system, and problem-solving subscales fit the Rasch model expectations; no modifications were required. The goal setting item 10 had a disordered threshold and was recoded. Four of the five follow-up subscale items had a disordered threshold and were recoded. All subscales were unidimensional and no local dependency was detected. DIF was only detected for some items in the follow-up subscale. The CFA revealed that none of the published factor structures fit the data; the fit statistics were appropriate when item 10 was removed and the follow-up subscale was removed.

Conclusions

Improving chronic disease care relies upon having validated measures to evaluate the extent to which care goals are met. With some modifications, four of the five PACIC subscales were found to be psychometrically robust.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Background: The global burden of chronic diseases. Retrieved from https://www.who.int/nutrition/topics/2_background/en/.

  2. 2.

    Wagner, E. H., Austin, B. T., & Von Korff, M. (1996). Improving outcomes in chronic illness. Manage Care Quaterly, 4(2), 12–25.

    CAS  Google Scholar 

  3. 3.

    Wagner, E. H. (1998). Chronic disease management: What will it take to improve care for chronic illness? Effective Clinical Practice, 1(1), 2–4.

    CAS  PubMed  Google Scholar 

  4. 4.

    Wagner, E. H., Austin, B. T., Davis, C., Hindmarsh, M., Schaefer, J., & Bonomi, A. (2001). Improving chronic illness care: Translating evidence into action. Health Affairs, 20(6), 64–78.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Davy, C., Bleasel, J., Liu, H., Tchan, M., Ponniah, S., & Brown, A. (2015). Effectiveness of chronic care models: Opportunities for improving healthcare practice and health outcomes: A systematic review. BMC Health Services Research, 15, 194.

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Glasgow, R. E., Wagner, E. H., Schaefer, J., Mahoney, L. D., Reid, R. J., & Greene, S. M. (2005). Development and validation of the Patient Assessment of Chronic Illness Care (PACIC). Medical Care, 43(5), 436–444.

    PubMed  Article  Google Scholar 

  7. 7.

    Vrijhoef, H. J., Berbee, R., Wagner, E. H., & Steuten, L. M. (2009). Quality of integrated chronic care measured by patient survey: Identification, selection and application of most appropriate instruments. Health Expectations, 12(4), 417–429.

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Maindal, H. T., Sokolowski, I., & Vedsted, P. (2012). Adaptation, data quality and confirmatory factor analysis of the Danish version of the PACIC questionnaire. European Journal of Public Health, 22(1), 31–36.

    PubMed  Article  Google Scholar 

  9. 9.

    Rosemann, T., Laux, G., Droesemeyer, S., Gensichen, J., & Szecsenyi, J. (2007). Evaluation of a culturally adapted German version of the Patient Assessment of Chronic Illness Care (PACIC 5A) questionnaire in a sample of osteoarthritis patients. Journal of Evaluation in Clinical Practice, 13(5), 806–813.

    PubMed  Article  Google Scholar 

  10. 10.

    Wensing, M., van Lieshout, J., Jung, H. P., Hermsen, J., & Rosemann, T. (2008). The Patients Assessment Chronic Illness Care (PACIC) questionnaire in The Netherlands: A validation study in rural general practice. BMC Health Service Research, 8, 182.

    Article  Google Scholar 

  11. 11.

    Cramm, J. M., & Nieboer, A. P. (2012). Factorial validation of the Patient Assessment of Chronic Illness Care (PACIC) and PACIC short version (PACIC-S) among cardiovascular disease patients in the Netherlands. Health and Quality of Life Outcomes, 10, 104.

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Aung, E., Ostini, R., Dower, J., Donald, M., Coll, J. R., Williams, G. M., & Doi, S. A. (2016). Patient Assessment of Chronic Illness Care (PACIC) in type 2 diabetes: A longitudinal study. Evaluation and Health Professions, 39(2), 185–203.

    Article  Google Scholar 

  13. 13.

    Gugiu, C., Coryn, C. L., & Applegate, B. (2010). Structure and measurement properties of the Patient Assessment of Chronic Illness Care instrument. Journal of Evaluation in Clinical Practice, 16(3), 509–516.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Gugiu, P. C., Coryn, C., Clark, R., & Kuehn, A. (2009). Development and evaluation of the short version of the Patient Assessment of Chronic Illness Care instrument. Chronic Illness, 5(4), 268–276.

    PubMed  Article  Google Scholar 

  15. 15.

    Iglesias, K., Burnand, B., & Peytremann-Bridevaux, I. (2014). PACIC Instrument: Disentangling dimensions using published validation models. International Journal for Qualily in Health Care, 26(6), 623–623.

    Article  Google Scholar 

  16. 16.

    Examining the factorial validity of selected modules from the Canadian survey of experiences with primary health care. Retrieved from https://www150.statcan.gc.ca/n1/pub/82-622-x/82-622-x2008001-eng.htm.

  17. 17.

    Gensichen, J., Serras, A., Paulitsch, M., Rosemann, T., König, J., Gerlach, F., & Petersen, J. (2011). The Patient Assessment of Chronic Illness Care questionnaire: Evaluation in patients with mental disorders in primary care. Community Mental Health Journal, 47(4), 447–453.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Taggart, J., Chan, B., Jayasinghe, U. W., Christl, B., Proudfoot, J., Crookes, P., et al. (2011). Patients Assessment of Chronic Illness Care (PACIC) in two Australian studies: Structure and utility. Journal of Evaluation in Clinical Practice, 17(2), 215–221.

    PubMed  Article  Google Scholar 

  19. 19.

    Krucien, N., Le Vaillant, M., & Pelletier-Fleury, N. (2014). Adaptation and validation of the patient assessment of chronic illness care in the French context. BMC Health Service Research, 14, 269.

    Article  Google Scholar 

  20. 20.

    Drewes, H. W., de Jong-van Til, J. T., Struijs, J. N., Baan, C. A., Tekle, F. B., Meijboom, B. R., & Westert, G. P. (2012). Measuring chronic care management experience of patients with diabetes: PACIC and PACIC+ validation. International Journal of Integrated Care, 12, e194.

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Rick, J., Rowe, K., Hann, M., Sibbald, B., Reeves, D., Roland, M., & Bower, P. (2012). Psychometric properties of the Patient Assessment of Chronic Illness Care measure: Acceptability, reliability and validity in United Kingdom patients with long-term conditions. BMC Health Service Research, 12, 293.

    Article  Google Scholar 

  22. 22.

    Fan, J. Q., Mccoy, R. G., Ziegenfuss, J. Y., Smith, S. A., Borah, B. J., Deming, J. R., et al. (2015). Evaluating the structure of the Patient Assessment of Chronic Illness Care (PACIC) survey from the patient’s perspective. Annals of Behavioral Medicine, 49(1), 104–111.

    PubMed  Article  Google Scholar 

  23. 23.

    Spicer, J., Budge, C., & Carryer, J. (2012). Taking the PACIC back to basics: The structure of the Patient Assessment of Chronic Illness Care. Journal of Evaluation in Clinical Practice, 18(2), 307–312.

    PubMed  Article  Google Scholar 

  24. 24.

    Pallant, J. F., & Tennant, A. (2007). An introduction to the Rasch measurement model: An example using the Hospital Anxiety and Depression Scale (HADS). British Journal of Clinical Psychology, 46, 1–18.

    Article  Google Scholar 

  25. 25.

    Christensen, K. B., Engelhard, G. J., & Salzberger, T. (2012). Ask the experts: Rasch vs. Factor analysis. Rasch Measurement Transactions, 26(3), 1373.

    Google Scholar 

  26. 26.

    Demars, C. E. (2013). A comparison of confirmatory factor analysis and multidimensional Rasch models to investigate the dimensionality of test-taking motivation. Journal of Applied Measurement, 14(2), 179–196.

    PubMed  Google Scholar 

  27. 27.

    Wright, B. D. (1994). Comparing factor analysis and Rasch measurement. Rasch Measurement Transactions, 8(1), 350.

    Google Scholar 

  28. 28.

    Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Chicago, IL: University of Chicago Press.

    Google Scholar 

  29. 29.

    Tennant, A., & Conaghan, P. G. (2007). The Rasch measurement model in rheumatology: What is it and why use it? When should it be applied, and what should one look for in a Rasch paper? Arthritis & Rheumatism-Arthritis Care & Research, 57(8), 1358–1362.

    Article  Google Scholar 

  30. 30.

    Hagquist, C., Bruce, M., & Gustavsson, J. P. (2009). Using the Rasch model in nursing research: An introduction and illustrative example. International Journal of Nursing Studies, 46(3), 380–393.

    PubMed  Article  Google Scholar 

  31. 31.

    Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149–174.

    Article  Google Scholar 

  32. 32.

    Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43(4), 561–573.

    Article  Google Scholar 

  33. 33.

    Andrich, D., Lyne, A., Sheridan, B., & Luo, G. (2010). RUMM2030. Perth, WA: RUMM Laboratory Pty.

    Google Scholar 

  34. 34.

    Shea, T. L., Tennant, A., & Pallant, J. F. (2009). Rasch model analysis of the Depression, Anxiety and Stress Scales (DASS). BMC Psychiatry, 9, 21.

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Tennant, A., & Pallant, J. F. (2007). DIF matters: A practical approach to test if Differential Item Functioning makes a difference. Rasch Measurement Transactions, 20(4), 1082–1084.

    Google Scholar 

  36. 36.

    Kline, R. B. (2019). Principles and practice of structural equation modeling (3rd ed.). New York: The Guiford Press.

    Google Scholar 

  37. 37.

    Weston, R., & Gore, P. A. (2006). A brief guide to structural equation modelling. Journal of Counseling Psychology, 34(5), 719–751.

    Article  Google Scholar 

  38. 38.

    Trochim, W. M., & Donnely, J. P. (2006). The research methods knowledge base (3rd ed.). Cincinnati, OH: Atomic Dog.

    Google Scholar 

  39. 39.

    Boomsma, A. (1982). Robustness of LISREL against small sample sizes in factor analysis models. In K. Joreskog & H. Wold (Eds.), Systems under indirection observation: Causality, structure, prediction (Part I) (pp. 149–173). Amsterdam: North Holland.

    Google Scholar 

  40. 40.

    Boomsma, A. (1985). Nonconvergence, improper solutions, and starting values in Lisrel Maximum-Likelihood Estimation. Psychometrika, 50(2), 229–242.

    Article  Google Scholar 

  41. 41.

    Bentler, P. M., & Chou, C. P. (1987). Practical issues in structural modeling. Sociological Methods & Research, 16(1), 78–117.

    Article  Google Scholar 

  42. 42.

    Bollen, K. A. (1989). A new incremental fit index for general structural equation models. Sociological Methods & Research, 17(3), 303–316.

    Article  Google Scholar 

  43. 43.

    Nunnally, J. C. (1967). Psychometric theory. New York: McGraw-Hill.

    Google Scholar 

  44. 44.

    Linacre, J. M. (1995). Rasch measurement transactions (1st ed.). Chicago: MESA Press.

    Google Scholar 

  45. 45.

    Guilleux, A., Blanchin, M., Hardouin, J. B., & Sebille, V. (2014). Power and sample size determination in the Rasch model: Evaluation of the robustness of a numerical method to non-normality of the latent trait. PLoS ONE, 9(1), e83652.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. 46.

    Gibbons, C. J., Small, N., Rick, J., Burt, J., Hann, M., & Bower, P. (2017). The Patient Assessment of Chronic Illness Care produces measurements along a single dimension: Results from a Mokken analysis. Health Quality of Life Outcomes, 15(1), 61.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Gudergan, S. P., Ringle, C. M., Wende, S., & Will, A. (2008). Confirmatory tetrad analysis in PLS path modeling. Journal of Business Research, 61(12), 1238–1249.

    Article  Google Scholar 

  48. 48.

    Stenner, J. A., Burdick, D. S., & Stone, M. H. (2008). Formative and reflective models: Can a Rasch analysis tell the difference? Rasch Measurement Transactions, 22(1), 1152–1153.

    Google Scholar 

  49. 49.

    Weston, R., & Gore, P. A. (2006). A brief guide to structural equation modeling. The Counseling Psychologist, 34(5), 719–751.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by The Canadian Institutes of Health Research, Strategy for Patient-Oriented research. [Grant number 139933].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sylvie Lambert.

Ethics declarations

Conflict of interest

There are no known conflicts of interest for any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lambert, S., McCusker, J., Belzile, E. et al. Using confirmatory factor analysis and Rasch analysis to examine the dimensionality of The Patient Assessment of Care for Chronic Illness Care (PACIC). Qual Life Res (2021). https://doi.org/10.1007/s11136-020-02750-9

Download citation

Keywords

  • Health care delivery
  • Healthcare systems
  • Chronic disease
  • Self-management
  • Psychometrics
  • Factor analysis