Quality of Life Research

, Volume 27, Issue 8, pp 2045–2056 | Cite as

Change in functioning outcomes as a predictor of the course of depression: a 12-month longitudinal study

  • Carlos G. Forero
  • Elena Olariu
  • Pilar Álvarez
  • José-Ignacio Castro-Rodriguez
  • Maria Jesús Blasco
  • Gemma Vilagut
  • Víctor Pérez
  • Jordi Alonso
  • INSAyD Investigators



Functioning is a necessary diagnostic criterion for depression, and thus routinely assessed in depressive patients. While it is highly informative of disorder severity, its change has not been tested for prognostic purposes. Our study aimed to analyze to what extent early functioning changes predict depression in the mid-term.


Longitudinal study (four occasions: baseline, 1, 3, and 12 months) of 243 patients with depressive symptomatology at three different services (primary care, outpatients, and hospital). Functioning was assessed on the first three occasions using the Global Assessment of Functioning (GAF), the WHODAS-2.0, and a self-reported functioning (SRF) rating scale. Growth mixture modeling of initial assessments served to estimate individual person-change parameters of each outcome. Person-growth parameters were used as predictors of major depressive episode at 12 months in a logistic regression model, adjusted by sex, age, healthcare level, and depression clinical status at third month. Predictive accuracy of all measures was assessed with area under the receiver operating curve (AUC).


Of the 179 patients who completed all assessments, 58% had an active depression episode at baseline and 20% at 12 months (64% non-recoveries and 36% new onsets). Individual trends of change in functioning significantly predicted patient depression status a year later (AUCWHODAS = 0.76; AUCGAF = 0.92; AUCSRF = 0.93).


Longitudinal modeling of functioning was highly predictive of patients’ clinical status after 1 year. Although clinical and patient-reported assessment had high prognostic value, the use of very simple patient-reported outcome measures could improve case management outside specialized psychiatric services.


Affective disorders Early intervention Questionnaire Functional disability WHODAS 



This work was supported by grants from the Spanish Ministry of Health, Instituto de Salud Carlos III-FEDER (PI10/00530, PI13/00506 and PI16/00165); Contract of training in research, ISCIII-FIS Río Hortega (CM14/00125); and by DIUE (2017 SGR 452; 2014 SGR 748).

The list of authors in INSAyD Investigators were Jordi Alonso, Carlos G Forero, Gemma Vilagut, Pilar Álvarez, José-Ignacio Castro-Rodriguez, Luis Miguel Martín-López, Lina Abellanas, Carrie Garnier, Maria Rosa Mas, Elena Pérez-Gallo, Marta Reinoso, Gabriela Barbaglia, Miquel A. Fullana, Alberto Maydeu, and Anna Brown.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the institutional and national research committees and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The protocol, information letters, questionnaires, and the informed consent forms of the study were approved by the Clinical Research Institutional Review Board (IRB) at Parc de Salut Mar, Barcelona in Spain. As a non-intervention, there was no expected adverse event or side effect for participants.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Alonso, J., Lépine, J.-P., & ESEMeD/MHEDEA 2000 Scientific Committee. (2007). Overview of key data from the European Study of the Epidemiology of Mental Disorders (ESEMeD). The Journal of Clinical Psychiatry, 68(Suppl 2), 3–9.PubMedGoogle Scholar
  2. 2.
    Kessler, R. C. (2012). The costs of depression. The Psychiatric clinics of North America, 35(1), 1–14. Scholar
  3. 3.
    Serrano-Blanco, A., Palao, D. J., Luciano, J. V., Pinto-Meza, A., Luján, L., Fernández, A., … Haro, J. M. (2010). Prevalence of mental disorders in primary care: results from the diagnosis and treatment of mental disorders in primary care study (DASMAP). Social Psychiatry and Psychiatric Epidemiology, 45(2), 201–210. Scholar
  4. 4.
    Wang, P. S., Aguilar-Gaxiola, S., Alonso, J., Angermeyer, M. C., Borges, G., Bromet, E. J., … Wells, J. E. (2007). Use of mental health services for anxiety, mood, and substance disorders in 17 countries in the WHO world mental health surveys. The Lancet, 370(9590), 841–850. Scholar
  5. 5.
    Gilbody, S. M. (2003). Improving the detection and management of depression in primary care. Quality and Safety in Health Care, 12(2), 149–155. Scholar
  6. 6.
    Zimmerman, M., McGlinchey, J. B., Posternak, M. A., Friedman, M., Attiullah, N., & Boerescu, D. (2006). How should remission from depression be defined? The depressed patient’s perspective. American Journal of Psychiatry, 163(1), 148–150. Scholar
  7. 7.
    Moos, R. H., McCoy, L., & Moos, B. S. (2000). Global Assessment of Functioning (GAF) ratings: Determinants and role as predictors of one-year treatment outcomes. Journal of Clinical Psychology, 56(4), 449–461.CrossRefPubMedGoogle Scholar
  8. 8.
    Curran, P. J., Obeidat, K., & Losardo, D. (2010). Twelve frequently asked questions about growth curve modeling. Journal of Cognition and Development, 11(2), 121–136. Scholar
  9. 9.
    Hajek, A., Brettschneider, C., Eisele, M., Lühmann, D., Mamone, S., Wiese, B., … König, H.-H. (2017). Disentangling the complex relation of disability and depressive symptoms in old age—Findings of a multicenter prospective cohort study in Germany. International Psychogeriatrics, 29(6), 885–895. Scholar
  10. 10.
    Hybels, C. F., Pieper, C. F., & Blazer, D. G. (2009). The complex relationship between depressive symptoms and functional limitations in community-dwelling older adults: The impact of subthreshold depression. Psychological Medicine, 39(10), 1677. Scholar
  11. 11.
    Mendes de Leon, C. F., & Rajan, K. B. (2014). Psychosocial influences in onset and progression of late life disability. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 69(2), 287–302. Scholar
  12. 12.
    Powers, J. H., Patrick, D. L., Walton, M. K., Marquis, P., Cano, S., Hobart, J., … Burke, L. B. (2017). Clinician-Reported Outcome Assessments of Treatment Benefit: Report of the ISPOR Clinical Outcome Assessment Emerging Good Practices Task Force. Value in Health, 20(1), 2–14. Scholar
  13. 13.
    Vatnaland, T., Vatnaland, J., Friis, S., & Opjordsmoen, S. (2007). Are GAF scores reliable in routine clinical use? Acta Psychiatrica Scandinavica, 115(4), 326–330. Scholar
  14. 14.
    Söderberg, P., Tungström, S., & Armelius, B.Å. (2005). Special section on the GAF: Reliability of Global Assessment of Functioning ratings made by clinical psychiatric staff. Psychiatric Services, 56(4), 434–438. Scholar
  15. 15.
    Zimmerman, M., McGlinchey, J. B., Posternak, M. A., Friedman, M., Boerescu, D., & Attiullah, N. (2008). Remission in depressed outpatients: More than just symptom resolution? Journal of Psychiatric Research, 42(10), 797–801. Scholar
  16. 16.
    Cieza, A., Brockow, T., Ewert, T., Amman, E., Kollerits, B., Chatterji, S., … Stucki, G. (2002). Linking health-status measurements to the international classification of functioning, disability and health. Journal of Rehabilitation Medicine, 34(5), 205–210. Scholar
  17. 17.
    American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington: American Psychiatric Association. Scholar
  18. 18.
    Regier, D. A., Kuhl, E. A., & Kupfer, D. J. (2013). The DSM-5: Classification and criteria changes. World Psychiatry, 12(2), 92–98. Scholar
  19. 19.
    Üstün, T., Kostanjsek, N., Chatterji, S., & Rehm, J. (2010). Measuring health and disability: Manual for WHO Disability Assessment Schedule (WHODAS 2.0). Geneva: World Health Organization.Google Scholar
  20. 20.
    Federici, S., Meloni, F., & Presti, A. L. (2009). International literature review on WHODAS II (World Health Organization Disability Assessment Schedule II). Life Span and Disability, 12(1), 83–110.Google Scholar
  21. 21.
    Luciano, J. V., Ayuso-Mateos, J. L., Fernandez, A., Aguado, J., Serrano-Blanco, A., Roca, M., & Haro, J. M. (2010). Utility of the twelve-item World Health Organization Disability Assessment Schedule II (WHO-DAS II) for discriminating depression “caseness” and severity in Spanish primary care patients. Quality of Life Research, 19(1), 97–101. Scholar
  22. 22.
    Bodlund, O., Kullgren, G., Ekselius, L., Lindström, E., & von Knorring, L. (1994). Axis V—Global Assessment of Functioning Scale. Evaluation of a self-report version. Acta Psychiatrica Scandinavica, 90(5), 342–347.CrossRefPubMedGoogle Scholar
  23. 23.
    Ramirez, A., Ekselius, L., & Ramklint, M. (2008). Axis V—Global Assessment of Functioning Scale (GAF), further evaluation of the self-report version. European Psychiatry, 23(8), 575–579. Scholar
  24. 24.
    Olariu, E., Forero, C. G., Álvarez, P., Castro-Rodriguez, J.-I., Blasco, M., & Alonso, J. (2015). Asking patients about their general level of functioning: Is IT worth IT for common mental disorders? Psychiatry Research, 229(3), 791–800. Scholar
  25. 25.
    Olariu, E., Castro-Rodriguez, J.-I., Álvarez, P., Garnier, C., Reinoso, M., Martín-López, L. M., … Forero, C. G. (2015). Validation of clinical symptom IRT scores for diagnosis and severity assessment of common mental disorders. Quality of Life Research, 24(4), 979–992. Scholar
  26. 26.
    Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-mental state. Journal of Psychiatric Research, 12(3), 189–198. Scholar
  27. 27.
    Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., … Dunbar, G. C. (1998). The MINI-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. The Journal of Clinical Psychiatry, 59(suppl 20), 22–33.PubMedGoogle Scholar
  28. 28.
    Kroenke, K., Spitzer, R. L., & Williams, J. B. (2001). The PHQ-9: validity of a brief depression severity measure. Journal of general internal medicine, 16(9), 606–613.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Fitzpatrick, R., Gibbons, E., & Mackintosh, A. (2009). An overview of patient-reported outcome measures for people with anxiety and depression 2009. Patient-reported Outcome Measurement Group Department of Public Health University of Oxford.Google Scholar
  30. 30.
    Pettersson, A., Boström, K. B., Gustavsson, P., & Ekselius, L. (2015). Which instruments to support diagnosis of depression have sufficient accuracy? A systematic review. Nordic Journal of Psychiatry, 69(7), 497–508. Scholar
  31. 31.
    First, M. (2001). Manual diagnóstico y estadístico de los trastornos mentales DSM-IV TR. Barcelona: Masson.Google Scholar
  32. 32.
    Centers for Disease Control and Prevention, & National Center for Health Statistics. (2013). ICD—ICD-9-CM—International classification of diseases, ninth revision, clinical modification. Classification of Diseases, Functioning, and Disability, 2008, 1–2.Google Scholar
  33. 33.
    Vázquez-Barquero, J. L., Vázquez, E.B., Castanedo, H., Saiz, S., Uriarte, J., Morales, M., … Ustün, T. B. (2000). Spanish version of the new World Health Organization Disability Assessment Schedule II (WHO-DAS-II): Initial phase of development and pilot study. Cantabria disability work group. Actas Españolas de Psiquiatría, 28(2), 77–87.PubMedGoogle Scholar
  34. 34.
    Curran, P. J., Bauer, D. J., & Willoughby, M. T. (2004). Testing main effects and interactions in latent curve analysis. Psychological Methods, 9(2), 220–237. Scholar
  35. 35.
    Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling: A Multidisciplinary Journal, 14(4), 535–569. Scholar
  36. 36.
    Dziak, J. J., Lanza, S. T., & Tan, X. (2014). Effect size, statistical power, and sample size requirements for the bootstrap likelihood ratio test in latent class analysis. Structural Equation Modeling: A Multidisciplinary Journal, 21(4), 534–552. Scholar
  37. 37.
    Larsen, R. (2011). Missing data imputation versus full information maximum likelihood with second-level dependencies. Structural Equation Modeling: A Multidisciplinary Journal, 18(4), 649–662.CrossRefGoogle Scholar
  38. 38.
    van Buuren, S. (2007). Multiple imputation of discrete and continuous data by fully conditional specification. Statistical Methods in Medical Research, 16(3), 219–242. Scholar
  39. 39.
    Castro-Rodríguez, J. I., Olariu, E., Garnier-Lacueva, C., Martín-López, L. M., Pérez-Solà, V., Alonso, J., & Forero, C. G. (2015). Diagnostic accuracy and adequacy of treatment of depressive and anxiety disorders: A comparison of primary care and specialized care patients. Journal of Affective Disorders, 172, 462–471. Scholar
  40. 40.
    Wardenaar, K. J., Giltay, E. J., van Veen, T., Zitman, F. G., & Penninx, B. W. J. H. (2012). Symptom dimensions as predictors of the two-year course of depressive and anxiety disorders. Journal of Affective Disorders, 136(3), 1198–1203. Scholar
  41. 41.
    McKnight, P. E., & Kashdan, T. B. (2009). The importance of functional impairment to mental health outcomes: A case for reassessing our goals in depression treatment research. Clinical Psychology Review, 29(3), 243–259. Scholar
  42. 42.
    Tiersky, L. A., DeLuca, J., Hill, N., Dhar, S. K., Johnson, S. K., Lange, G., … Natelson, B. H. (2001). Longitudinal assessment of neuropsychological functioning, psychiatric status, functional disability and employment status in chronic fatigue syndrome. Applied Neuropsychology, 8(1), 41–50. Scholar
  43. 43.
    Fleury, M.-J., Ngui, A., Bamvita, J.-M., Grenier, G., & Caron, J. (2014). Predictors of healthcare service utilization for mental health reasons. International Journal of Environmental Research and Public Health, 11(12), 10559–10586. Scholar
  44. 44.
    Álvarez, A. S. (2012). The application of the international classification of functioning, disability, and health in psychiatry. American Journal of Physical Medicine & Rehabilitation, 91, S69–S73. Scholar
  45. 45.
    Geisser, M. E., Clauw, D. J., Strand, V., Gendreau, M. R., Palmer, R., & Williams, D. A. (2010). Contributions of change in clinical status parameters to Patient Global Impression of Change (PGIC) scores among persons with fibromyalgia treated with milnacipran. Pain, 149(2), 373–378. Scholar
  46. 46.
    Ramirez, A., Ekselius, L., & Ramklint, M. (2008). Axis V—Global Assessment of Functioning Scale (GAF), further evaluation of the self-report version. European Psychiatry, 23, 575–579. Scholar
  47. 47.
    Bradley, S. M., Rumsfeld, J. S., & Ho, P. M. (2016). Incorporating health status in routine care to improve health care value. JAMA, 316(5), 487. Scholar
  48. 48.
    Sheeran, T., & Zimmerman, M. (2002). Case identification of depression with self-report questionnaires. Psychiatry Research, 109(1), 51–59.CrossRefPubMedGoogle Scholar
  49. 49.
    Alson, A. R., Robinson, D. M., Ivanova, D., Azer, J., Moreno, M., Turk, M. L., … Blackman, K. S. (2016). Depression in primary care. The International Journal of Psychiatry in Medicine, 51(2), 182–200. Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Carlos G. Forero
    • 1
    • 2
    • 3
  • Elena Olariu
    • 2
    • 3
  • Pilar Álvarez
    • 4
  • José-Ignacio Castro-Rodriguez
    • 2
    • 3
    • 4
  • Maria Jesús Blasco
    • 1
    • 2
    • 3
  • Gemma Vilagut
    • 1
    • 2
    • 3
  • Víctor Pérez
    • 4
    • 5
  • Jordi Alonso
    • 1
    • 2
    • 3
  • INSAyD Investigators
  1. 1.CIBER en Epidemiología y Salud Pública (CIBERESP)MadridSpain
  2. 2.Health Services Research UnitIMIM (Institut Hospital del Mar d’Investigacions Mèdiques)BarcelonaSpain
  3. 3.Department of Experimental and Health SciencesUniversitat Pompeu Fabra (UPF)BarcelonaSpain
  4. 4.Institute of Neuropsychiatry and Addictions (INAD)Parc de Salut MarBarcelonaSpain
  5. 5.CIBER en Salud Mental (CIBERSAM)MadridSpain

Personalised recommendations