Quality of Life Research

, Volume 25, Issue 9, pp 2221–2232 | Cite as

Assessment of the psychometrics of a PROMIS item bank: self-efficacy for managing daily activities

  • Ickpyo Hong
  • Craig A. Velozo
  • Chih-Ying Li
  • Sergio Romero
  • Ann L. Gruber-Baldini
  • Lisa M. Shulman



The aim of this study is to investigate the psychometrics of the Patient-Reported Outcomes Measurement Information System self-efficacy for managing daily activities item bank.


The item pool was field tested on a sample of 1087 participants via internet (n = 250) and in-clinic (n = 837) surveys. All participants reported having at least one chronic health condition. The 35 item pool was investigated for dimensionality (confirmatory factor analyses, CFA and exploratory factor analysis, EFA), item-total correlations, local independence, precision, and differential item functioning (DIF) across gender, race, ethnicity, age groups, data collection modes, and neurological chronic conditions (McFadden Pseudo R 2 less than 10 %).


The item pool met two of the four CFA fit criteria (CFI = 0.952 and SRMR = 0.07). EFA analysis found a dominant first factor (eigenvalue = 24.34) and the ratio of first to second eigenvalue was 12.4. The item pool demonstrated good item-total correlations (0.59–0.85) and acceptable internal consistency (Cronbach’s alpha = 0.97). The item pool maintained its precision (reliability over 0.90) across a wide range of theta (3.70), and there was no significant DIF.


The findings indicated the item pool has sound psychometric properties and the test items are eligible for development of computerized adaptive testing and short forms.


Patient-reported outcome measure Self-efficacy Daily activities Item response theory 



The study was funded by the National Institutes of Health, Grant 1U01AR057967-01, “Development and Validation of a Self–Efficacy Item Bank,” Lisa Shulman (Principal Investigator) and Craig Velozo, Ann Gruber-Baldini and Sergio Romero (Co-Investigators). The results and conclusions presented in this paper are those of the authors and are independent from the funding source.

Compliance with ethical standards

Conflict of interest

Ickpyo Hong declares that he has no conflict of interest. Craig A. Velozo declares that he has no conflict of interest. Chih-Ying Li declares that she has no conflict of interest. Sergio Romero declares that he has no conflict of interest. Ann L. Gruber-Baldini declares that she has no conflict of interest. Lisa M. Shulman declares that she has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This study was approved by the Institutional review boards (IRB) of the Medical University of South Carolina (#Pro00033397), the University of Maryland (#HP-000432550), and the University of Florida (#261-2010).

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Cella, D., Yount, S., Rothrock, N., Gershon, R., Cook, K., Reeve, B., et al. (2007). The Patient-Reported Outcomes Measurement Information System (PROMIS): Progress of an NIH roadmap cooperative group during its first two years. Medical Care, 45(5 Suppl 1), S3–S11. doi: 10.1097/01.mlr.0000258615.42478.55.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bodenheimer, T., Lorig, K., Holman, H., & Grumbach, K. (2002). Patient self-management of chronic disease in primary care. Journal of the American Medical Association, 288(19), 2469–2475.CrossRefPubMedGoogle Scholar
  3. 3.
    Leventhal, H., Weinman, J., Leventhal, E. A., & Phillips, L. A. (2008). Health psychology: The search for pathways between behavior and health. Annual Review of Psychology, 59, 477–505. doi: 10.1146/annurev.psych.59.103006.093643.CrossRefPubMedGoogle Scholar
  4. 4.
    Jones, F., Partridge, C., & Reid, F. (2008). The Stroke Self-Efficacy Questionnaire: Measuring individual confidence in functional performance after stroke. Journal of Clinical Nursing, 17(7b), 244–252. doi: 10.1111/j.1365-2702.2008.02333.x.CrossRefPubMedGoogle Scholar
  5. 5.
    Gramstad, A., Iversen, E., & Engelsen, B. A. (2001). The impact of affectivity dispositions, self-efficacy and locus of control on psychosocial adjustment in patients with epilepsy. Epilepsy Research, 46(1), 53–61.CrossRefPubMedGoogle Scholar
  6. 6.
    Schwartz, C. E., Coulthard-Morris, L., Zeng, Q., & Retzlaff, P. (1996). Measuring self-efficacy in people with multiple sclerosis: A validation study. Archives of Physical Medicine and Rehabilitation, 77(4), 394–398.CrossRefPubMedGoogle Scholar
  7. 7.
    Beckham, J. C., Burker, E. J., Lytle, B. L., Feldman, M. E., & Costakis, M. J. (1997). Self-efficacy and adjustment in cancer patients: A preliminary report. Behavioral Medicine, 23(3), 138–142. doi: 10.1080/08964289709596370.CrossRefPubMedGoogle Scholar
  8. 8.
    Wilcox, S., Schoffman, D. E., Dowda, M., & Sharpe, P. A. (2014). Psychometric properties of the 8-item english arthritis self-efficacy scale in a diverse sample. Arthritis, 2014, 385256. doi: 10.1155/2014/385256.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Edwards, R., Telfair, J., Cecil, H., & Lenoci, J. (2001). Self-efficacy as a predictor of adult adjustment to sickle cell disease: One-year outcomes. Psychosomatic Medicine, 63(5), 850–858.CrossRefPubMedGoogle Scholar
  10. 10.
    Lorig, K., Chastain, R. L., Ung, E., Shoor, S., & Holman, H. R. (1989). Development and evaluation of a scale to measure perceived self-efficacy in people with arthritis. Arthritis and Rheumatism, 32(1), 37–44.CrossRefPubMedGoogle Scholar
  11. 11.
    Lorig, K. R., Sobel, D. S., Ritter, P. L., Laurent, D., & Hobbs, M. (2001). Effect of a self-management program on patients with chronic disease. Effective Clinical Practice, 4(6), 256–262.PubMedGoogle Scholar
  12. 12.
    Reeve, B. B., Hays, R. D., Bjorner, J. B., Cook, K. F., Crane, P. K., Teresi, J. A., et al. (2007). Psychometric evaluation and calibration of health-related quality of life item banks: Plans for the Patient-Reported Outcomes Measurement Information System (PROMIS). Medical Care, 45(5 Suppl 1), S22–S31. doi: 10.1097/01.mlr.0000250483.85507.04.CrossRefPubMedGoogle Scholar
  13. 13.
    van der Linden, W. J., & Hambleton, R. K. (1997). Handbook of modern item response theory. New York: Springer.CrossRefGoogle Scholar
  14. 14.
    DeWalt, D. A., Rothrock, N., Yount, S., & Stone, A. A. (2007). Evaluation of item candidates: The PROMIS qualitative item review. Medical Care, 45(5 Suppl 1), S12–S21. doi: 10.1097/01.mlr.0000254567.79743.e2.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cella, D., Riley, W., Stone, A., Rothrock, N., Reeve, B., Yount, S., et al. (2010). The Patient-Reported Outcomes Measurement Information System (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005–2008. Journal of Clinical Epidemiology, 63(11), 1179–1194. doi: 10.1016/j.jclinepi.2010.04.011.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Revicki, D. A., Chen, W. H., Harnam, N., Cook, K. F., Amtmann, D., Callahan, L. F., et al. (2009). Development and psychometric analysis of the PROMIS pain behavior item bank. Pain, 146(1–2), 158–169. doi: 10.1016/j.pain.2009.07.029.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    IBM SPSS Statistics for Windows. (2013). (22.0 ed.). Armonk, NY: IBM Corp.Google Scholar
  18. 18.
    Hair, J. F., Anderson, R. E., Tatham, R. I., & Black, W. C. (1998). Multivariate data analysis with readings. Prentice Hall: NY.Google Scholar
  19. 19.
    Cronbach, L. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. doi: 10.1007/BF02310555.CrossRefGoogle Scholar
  20. 20.
    McHorney, C. A., & Tarlov, A. R. (1995). Individual-patient monitoring in clinical practice: Are available health status surveys adequate? Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 4(4), 293–307.CrossRefGoogle Scholar
  21. 21.
    Muthén, L. K., & Muthén, B. O. (2012). Mplus (7.11th ed.). CA: Los Angeles.Google Scholar
  22. 22.
    Revicki, D. A., Cook, K. F., Amtmann, D., Harnam, N., Chen, W. H., & Keefe, F. J. (2014). Exploratory and confirmatory factor analysis of the PROMIS pain quality item bank. Quality of Life Research, 23(1), 245–255. doi: 10.1007/s11136-013-0467-9.CrossRefPubMedGoogle Scholar
  23. 23.
    Cai, L., Thissen, D., & du Toit, S. H. C. (2011). IRTPRO for Windows (2.1st ed.). Lincolnwood, IL: Scientific Software International.Google Scholar
  24. 24.
    Orlando, M., & Thissen, D. (2000). Likelihood-based item-fit indices for dichotomous item response theory models. Applied Psychological Measurement, 24(1), 50–64.CrossRefGoogle Scholar
  25. 25.
    Orlando, M., & Thissen, D. (2003). Further investigation of the performance of S − χ2: An item fit index for use with dichotomous item response theory models. Applied Psychological Measurement, 27(4), 289–298. doi: 10.1177/0146621603027004004.CrossRefGoogle Scholar
  26. 26.
    Dodd, B., Koch, W., & De Ayala, R. (1989). Operational characteristics of adaptive testing procedures using the graded response model. Applied Psychological Measurement, 13(2), 129–143.CrossRefGoogle Scholar
  27. 27.
    Choi, S. W., Gibbons, L. E., & Crane, P. K. (2011). Lordif: An R Package for detecting differential item functioning using iterative hybrid ordinal logistic regression/item response theory and Monte Carlo simulations. Journal of Statistical Software, 39(8), 1–30.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Crane, P. K., van Belle, G., & Larson, E. B. (2004). Test bias in a cognitive test: Differential item functioning in the CASI. Statistics in Medicine, 23(2), 241–256. doi: 10.1002/sim.1713.CrossRefPubMedGoogle Scholar
  29. 29.
    Irwin, D. E., Stucky, B., Langer, M. M., Thissen, D., DeWitt, E. M., Lai, J.-S., et al. (2010). An item response analysis of the pediatric PROMIS anxiety and depressive symptoms scales. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 19(4), 595–607. doi: 10.1007/s11136-010-9619-3.CrossRefGoogle Scholar
  30. 30.
    Lai, J.-S., Cella, D., Choi, S., Junghaenel, D. U., Christodoulou, C., Gershon, R., et al. (2011). How item banks and their application can influence measurement practice in rehabilitation medicine: A PROMIS fatigue item bank example. Archives of Physical Medicine and Rehabilitation, 92(10), S20–S27.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Pilkonis, P. A., Choi, S. W., Reise, S. P., Stover, A. M., Riley, W. T., & Cella, D. (2011). Item banks for measuring emotional distress from the Patient-Reported Outcomes Measurement Information System (PROMIS®): Depression, anxiety, and anger. Assessment, 18(3), 263–283. doi: 10.1177/1073191111411667.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hays, R. D., Morales, L. S., & Reise, S. P. (2000). Item response theory and health outcomes measurement in the 21st century. Medical Care, 38(9 Suppl), 28–42.Google Scholar
  33. 33.
    Rose, M., Bjorner, J. B., Becker, J., Fries, J. F., & Ware, J. E. (2008). Evaluation of a preliminary physical function item bank supported the expected advantages of the Patient-Reported Outcomes Measurement Information System (PROMIS). Journal of Clinical Epidemiology, 61(1), 17–33. doi: 10.1016/j.jclinepi.2006.06.025.CrossRefPubMedGoogle Scholar
  34. 34.
    Scott, N. W., Fayers, P. M., Aaronson, N. K., Bottomley, A., de Graeff, A., Groenvold, M., et al. (2009). A simulation study provided sample size guidance for differential item functioning (DIF) studies using short scales. Journal of Clinical Epidemiology, 62(3), 288–295. doi: 10.1016/j.jclinepi.2008.06.003.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ickpyo Hong
    • 1
  • Craig A. Velozo
    • 2
  • Chih-Ying Li
    • 3
  • Sergio Romero
    • 4
    • 5
  • Ann L. Gruber-Baldini
    • 6
  • Lisa M. Shulman
    • 7
    • 8
  1. 1.Department of Health Sciences and ResearchMedical University of South CarolinaCharlestonUSA
  2. 2.Division of Occupational TherapyMedical University of South CarolinaCharlestonUSA
  3. 3.Department of Healthcare Leadership and ManagementMedical University of South CarolinaCharlestonUSA
  4. 4.Department of Occupational TherapyUniversity of FloridaGainesvilleUSA
  5. 5.Department of Veterans AffairsCenter of Innovation on Disability and Rehabilitation ResearchGainesvilleUSA
  6. 6.Division of Gerontology, Department of Epidemiology and Public HealthUniversity of Maryland School of MedicineBaltimoreUSA
  7. 7.Department of NeurologyUniversity of Maryland Parkinson Disease and Movement Disorders CenterBaltimoreUSA
  8. 8.Parkinson’s Disease and Movement Disorders and The Rosalyn Newman Distinguished Scholar in Parkinson’s DiseaseBaltimoreUSA

Personalised recommendations