Advertisement

Quality of Life Research

, Volume 23, Issue 7, pp 2109–2120 | Cite as

Validation of the Osteoporosis-Specific Morisky Medication Adherence Scale in long-term users of bisphosphonates

  • Kristi Reynolds
  • Hema N. Viswanathan
  • Paul Muntner
  • Teresa N. Harrison
  • T. Craig Cheetham
  • Jin-Wen Y. Hsu
  • Deborah T. Gold
  • Stuart Silverman
  • Andreas Grauer
  • Donald E. Morisky
  • Cynthia D. O’Malley
Article

Abstract

Purpose

To examine the psychometric properties and validity of the 8-item Osteoporosis-Specific Morisky Medication Adherence Scale (OS-MMAS-8) in postmenopausal women prescribed bisphosphonates (BPs) for at least 15 months.

Methods

A random sample of women aged ≥55 years with osteoporosis prescribed daily or weekly BPs was identified. Pharmacy fill data were extracted to calculate the medication possession ratio (MPR). Eligible women were stratified by low (<0.50), medium (0.50–0.79), or high (≥0.80) MPR, with the a priori goal of recruiting 133 participants in each group. OS-MMAS-8 scores can range from 0 to 8 and were categorized as low (<6), medium (6 to <8), and high (8) adherence. Internal consistency reliability (Cronbach’s alpha), test–retest reliability [intraclass correlation coefficients (ICCs)] and convergent validity (correlating OS-MMAS-8 with MPR and other self-reported measures) were assessed.

Results

A total of 400 women out of 449 respondents reported that they were still taking their BPs at the time of the survey and completed OS-MMAS-8. Overall, 38.5, 34.3, and 27.3 % of participants had low, medium, and high OS-MMAS-8 scores, respectively. The mean (SD) MPRs according to OS-MMAS-8 scores (<6, 6 to <8 and 8) were 56.9 (22.6), 69.0 (24.9), and 76.7 (26.4), respectively. The correlation between OS-MMAS-8 and MPR was 0.36; p < 0.0001. Cronbach’s alpha was 0.74, and the ICC was 0.83 (95 % CI 0.76–0.88).

Conclusions

OS-MMAS-8 has acceptable psychometric properties for assessing medication adherence in postmenopausal women prescribed therapy for osteoporosis. Additional studies are needed to investigate the psychometric properties of OS-MMAS-8 in other settings and populations.

Keywords

Adherence Bisphosphonates Postmenopausal osteoporosis Psychometric Reliability Validity Morisky scale 

Notes

Acknowledgments

We acknowledge the exemplary contributions of the study staff at the Department of Research & Evaluation, Kaiser Permanente Southern California (Alexander Carruth, Kimberly Saylor, Rong Wei, and Sandra Zakai). We thank David Macarios of Amgen Inc. for his insights on the Needs–Concerns Differential analyses. This study was funded by a contractual agreement between Kaiser Permanente Southern California and Amgen Inc., Thousand Oaks, CA.

Conflict of interest

Drs. O’Malley, Viswanathan and Grauer are employees of Amgen Inc. and own stock in Amgen Inc. Drs. Muntner, Gold, Silverman, and Morisky have served as advisors for Amgen Inc. Drs. Muntner, Gold and Silverman have served as consultants for Amgen Inc. Drs. Reynolds and Muntner received research support from Amgen Inc. Dr. Silverman has served as an advisor for Lilly, Novartis and Pfizer/Wyeth. Dr. Silverman has served as a consultant for Genentech, Lilly, Novartis and Pfizer/Wyeth. Dr. Silverman has received research support from Lilly and Pfizer/Wyeth. This study was funded by a contractual agreement between Kaiser Permanente Southern California and Amgen Inc., Thousand Oaks, CA.

Supplementary material

11136_2014_662_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 16 kb)
11136_2014_662_MOESM2_ESM.docx (14 kb)
Supplementary material 2 (DOCX 14 kb)

References

  1. 1.
    National Osteoporosis Foundation. (2013). What is osteoporosis? Retrieved June 19, 2013, from http://www.nof.org/articles/7.
  2. 2.
    Rosen, C. J. (2005). Clinical practice. Postmenopausal osteoporosis. The New England Journal of Medicine, 353(6), 595–603.PubMedCrossRefGoogle Scholar
  3. 3.
    Watts, N. B., Bilezikian, J. P., Camacho, P. M., Greenspan, S. L., Harris, S. T., Hodgson, S. F., et al. (2010). American association of clinical endocrinologists medical guidelines for clinical practice for the diagnosis and treatment of postmenopausal osteoporosis: Executive summary of recommendations. Endocrine Practice, 16(6), 1016–1019.PubMedCrossRefGoogle Scholar
  4. 4.
    Black, D. M., Delmas, P. D., Eastell, R., Reid, I. R., Boonen, S., Cauley, J. A., et al. (2007). Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. The New England Journal of Medicine, 356(18), 1809–1822.PubMedCrossRefGoogle Scholar
  5. 5.
    Halpern, R., Becker, L., Iqbal, S. U., Kazis, L. E., Macarios, D., & Badamgarav, E. (2011). The association of adherence to osteoporosis therapies with fracture, all-cause medical costs, and all-cause hospitalizations: A retrospective claims analysis of female health plan enrollees with osteoporosis. Journal of Managed Care Pharmacy, 17(1), 25–39.PubMedGoogle Scholar
  6. 6.
    Siris, E. S., Selby, P. L., Saag, K. G., Borgstrom, F., Herings, R. M., & Silverman, S. L. (2009). Impact of osteoporosis treatment adherence on fracture rates in North America and Europe. The American Journal of Medicine, 122(2 Suppl), S3–S13.PubMedCrossRefGoogle Scholar
  7. 7.
    Weycker, D., Macarios, D., Edelsberg, J., & Oster, G. (2007). Compliance with osteoporosis drug therapy and risk of fracture. Osteoporosis International, 18(3), 271–277.PubMedCrossRefGoogle Scholar
  8. 8.
    Kothawala, P., Badamgarav, E., Ryu, S., Miller, R. M., & Halbert, R. J. (2007). Systematic review and meta-analysis of real-world adherence to drug therapy for osteoporosis. Mayo Clinic Proceedings, 82(12), 1493–1501.PubMedCrossRefGoogle Scholar
  9. 9.
    Weycker, D., Macarios, D., Edelsberg, J., & Oster, G. (2006). Compliance with drug therapy for postmenopausal osteoporosis. Osteoporosis International, 17(11), 1645–1652.PubMedCrossRefGoogle Scholar
  10. 10.
    Osterberg, L., & Blaschke, T. (2005). Adherence to medication. The New England Journal of Medicine, 353(5), 487–497.PubMedCrossRefGoogle Scholar
  11. 11.
    Hess, L. M., Raebel, M. A., Conner, D. A., & Malone, D. C. (2006). Measurement of adherence in pharmacy administrative databases: A proposal for standard definitions and preferred measures. The Annals of Pharmacotherapy, 40(7–8), 1280–1288.PubMedCrossRefGoogle Scholar
  12. 12.
    Reynolds, K., Viswanathan, H. N., O’Malley, C. D., Muntner, P., Harrison, T. N., Cheetham, T. C., et al. (2012). Psychometric properties of the osteoporosis-specific Morisky Medication Adherence Scale in postmenopausal women with osteoporosis newly treated with bisphosphonates. The Annals of Pharmacotherapy, 46(5), 659–670.PubMedCrossRefGoogle Scholar
  13. 13.
    Koebnick, C., Langer-Gould, A. M., Gould, M. K., Chao, C. R., Iyer, R. L., Smith, N., et al. (2012). Sociodemographic characteristics of members of a large, integrated health care system: Comparison with US Census Bureau Data. The Permanente Journal, 16(3), 37–41.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Sikka, R., Xia, F., & Aubert, R. E. (2005). Estimating medication persistency using administrative claims data. The American Journal of Managed Care, 11(7), 449–457.PubMedGoogle Scholar
  15. 15.
    Steiner, J. F., & Prochazka, A. V. (1997). The assessment of refill compliance using pharmacy records: Methods, validity, and applications. Journal of Clinical Epidemiology, 50(1), 105–116.PubMedCrossRefGoogle Scholar
  16. 16.
    Horne, R., Weinman, J., & Hankins, M. (1999). The beliefs about medicines questionnaire: The development and evaluation of a new method for assessing the cognitive representation of medication. Psychology and Health, 14, 1–24.CrossRefGoogle Scholar
  17. 17.
    Risser, J., Jacobson, T. A., & Kripalani, S. (2007). Development and psychometric evaluation of the Self-efficacy for Appropriate Medication Use Scale (SEAMS) in low-literacy patients with chronic disease. Journal of Nursing Measurement, 15(3), 203–219.PubMedCrossRefGoogle Scholar
  18. 18.
    Dimenas, E., Glise, H., Hallerback, B., Hernqvist, H., Svedlund, J., & Wiklund, I. (1993). Quality of life in patients with upper gastrointestinal symptoms. An improved evaluation of treatment regimens? Scandinavian Journal of Gastroenterology, 28(8), 681–687.PubMedCrossRefGoogle Scholar
  19. 19.
    Atkinson, M. J., Sinha, A., Hass, S. L., Colman, S. S., Kumar, R. N., Brod, M., et al. (2004). Validation of a general measure of treatment satisfaction, the Treatment Satisfaction Questionnaire for Medication (TSQM), using a national panel study of chronic disease. Health and Quality of Life Outcomes, 2, 12.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Ware, J., Jr, Kosinski, M., & Keller, S. D. (1996). A 12-Item Short-Form Health Survey: Construction of scales and preliminary tests of reliability and validity. Medical Care, 34(3), 220–233.PubMedCrossRefGoogle Scholar
  21. 21.
    Krousel-Wood, M., Islam, T., Webber, L. S., Re, R. N., Morisky, D. E., & Muntner, P. (2009). New medication adherence scale versus pharmacy fill rates in seniors with hypertension. The American Journal of Managed Care, 15(1), 59–66.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Morisky, D. E., Ang, A., Krousel-Wood, M., & Ward, H. J. (2008). Predictive validity of a medication adherence measure in an outpatient setting. Journal of Clinical Hypertension, 10(5), 348–354.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Horne, R., Buick, D., Fisher, M., Leake, H., Cooper, V., & Weinman, J. (2004). Doubts about necessity and concerns about adverse effects: Identifying the types of beliefs that are associated with non-adherence to HAART. International Journal of STD and AIDS, 15(1), 38–44.PubMedCrossRefGoogle Scholar
  24. 24.
    Revicki, D. A., Wood, M., Wiklund, I., & Crawley, J. (1998). Reliability and validity of the Gastrointestinal Symptom Rating Scale in patients with gastroesophageal reflux disease. Quality of Life Research, 7(1), 75–83.PubMedCrossRefGoogle Scholar
  25. 25.
    Cronbach, L. J. (1951). Coefficient alpha and internal structure tests. Psychometrika, 16, 297–334.CrossRefGoogle Scholar
  26. 26.
    Nunnaly, J. (1978). Psychometric theory. New York: McGraw-Hill.Google Scholar
  27. 27.
    Leidy, N. K., Revicki, D. A., & Geneste, B. (1999). Recommendations for evaluating the validity of quality of life claims for labeling and promotion. Value in Health, 2(2), 113–127.PubMedCrossRefGoogle Scholar
  28. 28.
    Lin, L. I. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45(1), 255–268.PubMedCrossRefGoogle Scholar
  29. 29.
    Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174.PubMedCrossRefGoogle Scholar
  30. 30.
    Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New York: Lawrence Erlbaum.Google Scholar
  31. 31.
    Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246.PubMedCrossRefGoogle Scholar
  32. 32.
    Browne, M., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods & Research, 21, 230–259.CrossRefGoogle Scholar
  33. 33.
    Hatcher, L. (1994). A step-by-step approach to using the SAS system for factor analysis and structural equation modeling. Cary, NC: SAS Institute.Google Scholar
  34. 34.
    Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3, 424–453.CrossRefGoogle Scholar
  35. 35.
    Karve, S., Cleves, M. A., Helm, M., Hudson, T. J., West, D. S., & Martin, B. C. (2009). Good and poor adherence: Optimal cut-point for adherence measures using administrative claims data. Current Medical Research and Opinion, 25(9), 2303–2310.PubMedCrossRefGoogle Scholar
  36. 36.
    Breuil, V., Cortet, B., Cotte, F. E., Arnould, B., Dias-Barbosa, C., Gaudin, A. F., et al. (2012). Validation of the adherence evaluation of osteoporosis treatment (ADEOS) questionnaire for osteoporotic post-menopausal women. Osteoporosis International, 23(2), 445–455.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Haynes, R. B., Taylor, D. W., Sackett, D. L., Gibson, E. S., Bernholz, C. D., & Mukherjee, J. (1980). Can simple clinical measurements detect patient noncompliance? Hypertension, 2(6), 757–764.PubMedCrossRefGoogle Scholar
  38. 38.
    Ho, P. M., Bryson, C. L., & Rumsfeld, J. S. (2009). Medication adherence: Its importance in cardiovascular outcomes. Circulation, 119(23), 3028–3035.PubMedCrossRefGoogle Scholar
  39. 39.
    DiMatteo, M. R. (2004). Variations in patients’ adherence to medical recommendations: A quantitative review of 50 years of research. Medical Care, 42(3), 200–209.PubMedCrossRefGoogle Scholar
  40. 40.
    Curtis, J. R., Cai, Q., Wade, S. W., Stolshek, B. S., Adams, J. L., Balasubramanian, A., et al. (2013). Osteoporosis medication adherence: Physician perceptions vs. patients’ utilization. Bone, 55(1), 1–6.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Kristi Reynolds
    • 1
  • Hema N. Viswanathan
    • 2
  • Paul Muntner
    • 3
  • Teresa N. Harrison
    • 1
  • T. Craig Cheetham
    • 4
  • Jin-Wen Y. Hsu
    • 1
  • Deborah T. Gold
    • 5
    • 6
    • 7
  • Stuart Silverman
    • 8
  • Andreas Grauer
    • 9
  • Donald E. Morisky
    • 10
  • Cynthia D. O’Malley
    • 11
  1. 1.Department of Research & EvaluationKaiser Permanente Southern CaliforniaPasadenaUSA
  2. 2.Global Health EconomicsAmgen Inc.Thousand OaksUSA
  3. 3.Department of EpidemiologyUniversity of Alabama at BirminghamBirminghamUSA
  4. 4.Pharmacy Analytical ServiceKaiser PermanenteDowneyUSA
  5. 5.Department of Psychiatry and Behavioral SciencesDuke University Medical CenterDurhamUSA
  6. 6.Department of SociologyDuke University Medical CenterDurhamUSA
  7. 7.Department of Psychology and NeuroscienceDuke University Medical CenterDurhamUSA
  8. 8.Department of RheumatologyCedars-Sinai/UCLALos AngelesUSA
  9. 9.Clinical DevelopmentAmgen Inc.Thousand OaksUSA
  10. 10.Department of Community Health SciencesUCLA Fielding School of Public HealthLos AngelesUSA
  11. 11.Center for Observational ResearchAmgen Inc.South San FranciscoUSA

Personalised recommendations