Advertisement

Quality of Life Research

, Volume 24, Issue 1, pp 19–29 | Cite as

Assessment of score- and Rasch-based methods for group comparison of longitudinal patient-reported outcomes with intermittent missing data (informative and non-informative)

  • Élodie de Bock
  • Jean-Benoit Hardouin
  • Myriam Blanchin
  • Tanguy Le Neel
  • Gildas Kubis
  • Véronique Sébille
Quantitative Methods Special Section

Abstract

Purpose

The purpose of this study was to identify the most adequate strategy for group comparison of longitudinal patient-reported outcomes in the presence of possibly informative intermittent missing data. Models coming from classical test theory (CTT) and item response theory (IRT) were compared.

Methods

Two groups of patients’ responses to dichotomous items with three times of assessment were simulated. Different cases were considered: presence or absence of a group effect and/or a time effect, a total of 100 or 200 patients, 4 or 7 items and two different values for the correlation coefficient of the latent trait between two consecutive times (0.4 or 0.9). Cases including informative and non-informative intermittent missing data were compared at different rates (15, 30 %). These simulated data were analyzed with CTT using score and mixed model (SM) and with IRT using longitudinal Rasch mixed model (LRM). The type I error, the power and the bias of the group effect estimations were compared between the two methods.

Results

This study showed that LRM performs better than SM. When the rate of missing data rose to 30 %, estimations were biased with SM mainly for informative missing data. Otherwise, LRM and SM methods were comparable concerning biases. However, regardless of the rate of intermittent missing data, power of LRM was higher compared to power of SM.

Conclusions

In conclusion, LRM should be favored when the rate of missing data is higher than 15 %. For other cases, SM and LRM provide similar results.

Keywords

IRT CTT Rasch models Longitudinal data PROs Missing data 

Notes

Acknowledgments

This study was supported by the Ligue Nationale Contre le Cancer and the Comité de Loire-Atlantique de la Ligue Contre le Cancer.

References

  1. 1.
    Garcia, S. F., Cella, D., Clauser, S. B., Flynn, K. E., Lad, T., Lai, J. S., et al. (2007). Standardizing patient-reported outcomes assessment in cancer clinical trials: a patient-reported outcomes measurement information system initiative. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 25, 5106. doi: 10.1200/JCO.2007.12.2341.CrossRefGoogle Scholar
  2. 2.
    Falissard, B. (2001). Mesurer la subjectivité en santé: Perspective méthodologique et statistique. Paris: Masson.Google Scholar
  3. 3.
    Fairclough, D.L., Peterson, H.F., Chang, V. (1998). Why are missing quality of life data a problem in clinical trials of cancer therapy? Statistics in Medicine. doi: 10.1002/(SICI)1097-0258(19980315/15)17:5/7<667::AID-SIM813>3.0.CO;2-6.
  4. 4.
    Bernhard, J., Cella, D.F., Coates, A.S., Fallowfield, L., Ganz, P.A., Moinpour, C.M., Mosconi, P., Osoba, D., Simes, J., Hürny, C. (1998) Missing quality of life data in cancer clinical trials: serious problems and challenges. Statistics in Medicine. doi: 10.1002/(SICI) 1097-0258(19980315/15)17:5/7 < 517::AID-SIM799 > 3.0.CO;2-S.
  5. 5.
    Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data (Second ed.). London: Wiley.CrossRefGoogle Scholar
  6. 6.
    Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 142. doi: 10.1037/1082-989X.7.2.147.CrossRefGoogle Scholar
  7. 7.
    Holman, R., & Glas, C. A. W. (2005). Modelling non-ignorable missing-data mechanisms with item response theory models. British Journal of Mathematical and Statistical Psychology, 58, 1. doi: 10.1111/j.2044-8317.2005.tb00312.x.PubMedCrossRefGoogle Scholar
  8. 8.
    Curran, D., Molenberghs, G., Fayers, P.M., Machin, D. (1998). Incomplete quality of life data in randomized trials: missing forms. Statistics in Medicine. doi: 10.1002/(SICI)1097-0258(19980315/15)17:5/7<697::AID-SIM815>3.0.CO;2-Y.
  9. 9.
    Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association, 90(431), 1112–1121.CrossRefGoogle Scholar
  10. 10.
    Curran, D., Bacchi, M., Schmitz, S.F.H., Molenberghs, G., Sylvester, R.J. (1998). Identifying the types of missingness in quality of life data from clinical trials. Statistics in Medicine. doi: 10.1002/(SICI)1097-0258(19980315/15)17:5/7<739::AID-SIM818>3.0.CO; 2-M.
  11. 11.
    Fayers, P.M., Curran, D., Machin, D. (1998). Incomplete quality of life data in randomized trials: missing items. Statistics in Medicine. doi: 10.1002/(SICI) 1097-0258(19980315/15)17:5/7 < 679::AID-SIM814 > 3.0.CO;2-X.
  12. 12.
    Blanchin, M., Hardouin, J.-B., Le Neel, T., Kubis, G., Blanchard, C., Mirallié, E., et al. (2011). Comparison of CTT and Rasch-based approaches for the analysis of longitudinal patient reported outcomes. Statistics in Medicine, 30, 825. doi: 10.1002/sim.4153.PubMedGoogle Scholar
  13. 13.
    Blanchin, M., Hardouin, J.-B., Le Neel, T., Kubis, G., & Sébille, V. (2011). Analysis of longitudinal patient reported outcomes with informative and non-informative dropout: Comparison of CTT and Rasch-based methods. International Journal of Applied Mathematics and Statistics, 24(SI-11A), 107–124.Google Scholar
  14. 14.
    de Bock, E., Hardouin, J-B., Blanchin, M., Le Neel, T., Kubis, G., Dantan, E., Bonnaud-Antignac, A., Sébille, V. (2013). Rasch-family models are more valuable than score-based approaches for analysing longitudinal PRO with intermittent missing data. Statistical Methods in Medical Research: Published online.Google Scholar
  15. 15.
    Hamel, J.-F., Hardouin, J.-B., Le Neel, T., Kubis, G., Roquelaure, Y., & Sébille, V. (2012). Biases and power for groups comparison on subjective health measurements. PLoS ONE,. doi: 10.1371/journal.pone.0044695.Google Scholar
  16. 16.
    Burton, A., Altman, D. G., Royston, P., & Holder, R. L. (2006). The design of simulation studies in medical statistics. Statistics in Medicine,. doi: 10.1002/sim.2673.Google Scholar
  17. 17.
    Holland, P. W., & Hoskens, M. (2003). Classical test theory as a first-order item response theory: Application to true-score prediction from a possibly nonparallel test. Psychometrika, 68(1), 123–149.CrossRefGoogle Scholar
  18. 18.
    Kissane, D. W., Patel, S. G., Baser, R. E., Bell, R., Farberov, M., Ostroff, J. S., et al. (2012). Preliminary evaluation of the reliability and validity of the shame and stigma scale in head and neck cancer. Head and Neck,. doi: 10.1002/hed.22943.PubMedGoogle Scholar
  19. 19.
    Cella, D., Beaumont, J., Webster, K., Lai, J. S., & Elting, L. (2006). Measuring the concerns of cancer patients with low platelet counts: the functional assessment of cancer therapy-thrombocytopenia (FACT-Th) questionnaire. Supportive Care in Cancer,. doi: 10.1007/s00520-006-0102-1.Google Scholar
  20. 20.
    Bjorner, J., Petersen, M., Groenvold, M., Aaronson, N., Ahlner-elmqvist, M., Arraras, J., et al. (2004). Use of item response theory to develop a shortened version of the EORTC QLQ-C30 emotional functioning scale. Quality of Life Research,. doi: 10.1007/s11136-004-7866-x.Google Scholar
  21. 21.
    Fayers, P. M., & Machin, D. (2007). Quality of life: The assessment, analysis and interpretation of patient-reported outcomes (Second ed.). London: Wiley.CrossRefGoogle Scholar
  22. 22.
    Peyre, H., Leplège, A., & Coste, J. (2011). Missing data methods for dealing with missing items in quality of life questionnaires. A comparison by simulation of personal mean score, full information maximum likelihood, multiple imputation, and hot deck techniques applied to the SF-36 in the French 2003 decennial health survey. Quality of Life Research, 20, 287. doi: 10.1007/s11136-010-9740-3.PubMedCrossRefGoogle Scholar
  23. 23.
    Tenenhaus, M. (1999). Statistique et logiciels: Analyse de la variance à effets mixtes utilisation de la proc MIXED: Mais que reste-t-il à la proc GLM ? La Revue de Modulad, 23, 53–67.Google Scholar
  24. 24.
    Fischer, G. H., & Molenaar, I. W. (1995). Rasch models: Foundations, recent developments, and applications. New York: Springer.CrossRefGoogle Scholar
  25. 25.
    Glas, C. A., Geerlings, H., van de Laar, M. A., & Taal, E. (2009). Analysis of longitudinal randomized clinical trials using item response models. Contemporary Clinical Trials,. doi: 10.1016/j.cct.2008.12.003.PubMedGoogle Scholar
  26. 26.
    Davier, M., Meiser, T. (2007). Rasch models for longitudinal data. New York: Springer, Statistics for Social and Behavioral Sciences.Google Scholar
  27. 27.
    Zheng, X., & Rabe-Hesketh, S. (2007). Estimating parameters of dichotomous and ordinal item response models with gllamm. Stata Journal, 7(3), 313–333.Google Scholar
  28. 28.
    Dempster, A. P., & Rubin, D. B. (1983). Overview, in incomplete data in sample surveys, Vol. II: Theory and annotated bibliography. New-York: Academic Press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Élodie de Bock
    • 1
  • Jean-Benoit Hardouin
    • 1
  • Myriam Blanchin
    • 1
  • Tanguy Le Neel
    • 1
  • Gildas Kubis
    • 1
  • Véronique Sébille
    • 1
  1. 1.EA4275-SPHERE, ‘Biostatistics, Pharmacoepidemiology and Subjective Measures in Health Sciences’, Faculté de PharmacieUniversité de NantesNantes Cedex 01France

Personalised recommendations