Quality of Life Research

, Volume 23, Issue 5, pp 1445–1457 | Cite as

Using existing data to identify candidate items for a health state classification system in multiple sclerosis

  • Ayse Kuspinar
  • Lois Finch
  • Simon Pickard
  • Nancy E. Mayo



In multiple sclerosis (MS), the use of preference-based measures is limited to generic measures such as Health Utilities Index Mark 2 and 3, the EQ-5D and the SF-6D. However, the challenge of using such generic preference-based measures in people with MS is that they may not capture all domains of health relevant to the disease. Therefore, the main aim of this paper is to describe the development of a health state classification system for MS patients. The specific objectives are: (1) to identify items best reflecting the domains of quality of life important to people with MS and (2) to provide evidence for the discriminative capacity of the response options by cross-walking onto a visual analog scale of health rating.


The data come from an epidemiologically sampled population of people with MS diagnosed post-1994. The dataset consisted of 206 items relating to impairments, activity limitations, participation restrictions, health perception and quality of life. Important domains were identified from the responses to the Patient Generated Index, an individualized measure of quality of life. The extent to which the items formed a uni-dimensional, linear construct was estimated using Rasch analysis, and the best item was selected using the threshold map.


The sample was young (mean age 43) and predominantly female (n = 140/189; 74 %). The P-PBMSI classification system consisted of five items, with three response levels per item, producing a total of 243 possible health states. Regression coefficient values consistently decreased between response levels and the linear test for trend were statistically significant for all items. The linear test for trend indicated that for each item the response options provided the same discriminative ability within the magnitude of their capacity. A scoring algorithm was estimated using a simple additive formula. The classification system demonstrated convergent validity against other measures of similar constructs and known-groups validity between different clinical subgroups.


This study produced a health state classifier system based on items impacted upon by MS, and demonstrated the potential to discriminate the health impact of the disease.


Health-related quality of life Utility Preference-based measures Multiple sclerosis 



This work was supported in part by the Canadian Institutes of Health Research and a scholarship from the Fonds de la Recherche en Santé du Quebec.


  1. 1.
    Miller, D. M., Moore, S. M., Fox, R. J., Atreja, A., Fu, A. Z., Lee, J. C., et al. (2011). Web-based self-management for patients with multiple sclerosis: A practical, randomized trial. Telemedicine Journal & E-Health, 17, 5–13.CrossRefGoogle Scholar
  2. 2.
    Barlow, J., Turner, A., Edwards, R., & Gilchrist, M. (2009). A randomised controlled trial of lay-led self-management for people with multiple sclerosis. Patient Education and Counseling, 77, 81–89.PubMedCrossRefGoogle Scholar
  3. 3.
    Bombardier, C. H., Cunniffe, M., Wadhwani, R., Gibbons, L. E., Blake, K. D., & Kraft, G. H. (2008). The efficacy of telephone counseling for health promotion in people with multiple sclerosis: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 89, 1849–1856.PubMedCrossRefGoogle Scholar
  4. 4.
    McAuley, E., Motl, R. W., Morris, K. S., Hu, L., Doerksen, S. E., Elavsky, S., et al. (2007). Enhancing physical activity adherence and well-being in multiple sclerosis: A randomised controlled trial. Multiple Sclerosis, 13, 652–659.PubMedCrossRefGoogle Scholar
  5. 5.
    Grossman, P., Kappos, L., Gensicke, H., D’Souza, M., Mohr, D. C., Penner, I. K., et al. (2010). MS quality of life, depression, and fatigue improve after mindfulness training: A randomized trial. Neurology, 75, 1141–1149.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Forman, A. C., & Lincoln, N. B. (2010). Evaluation of an adjustment group for people with multiple sclerosis: A pilot randomized controlled trial. Clinical Rehabilitation, 24, 211–221.PubMedCrossRefGoogle Scholar
  7. 7.
    Cosio, D., Jin, L., Siddique, J., & Mohr, D. C. (2011). The effect of telephone-administered cognitive-behavioral therapy on quality of life among patients with multiple sclerosis. Annals of Behavioral Medicine, 41, 227–234.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Kavia, R. B., De, R. D., Constantinescu, C. S., Stott, C. G., & Fowler, C. J. (2010). Randomized controlled trial of Sativex to treat detrusor overactivity in multiple sclerosis. Multiple Sclerosis, 16, 1349–1359.PubMedCrossRefGoogle Scholar
  9. 9.
    Moller, F., Poettgen, J., Broemel, F., Neuhaus, A., Daumer, M., & Heesen, C. (2011). HAGIL (Hamburg Vigil Study): A randomized placebo-controlled double-blind study with modafinil for treatment of fatigue in patients with multiple sclerosis. Multiple Sclerosis, 17, 1002–1009.PubMedCrossRefGoogle Scholar
  10. 10.
    Freeman, J. A., Thompson, A. J., Fitzpatrick, R., Hutchinson, M., Miltenburger, C., Beckmann, K., et al. (2001). European Study Group on Interferon-beta: Interferon-beta1b in the treatment of secondary progressive MS: Impact on quality of life. Neurology, 57, 1870–1875.PubMedCrossRefGoogle Scholar
  11. 11.
    Rudick, R. A., Miller, D., Hass, S., Hutchinson, M., Calabresi, P. A., Confavreux, C., et al. (2007). AFFIRM and SENTINEL investigators: Health-related quality of life in multiple sclerosis: Effects of natalizumab. Annals of Neurology, 62, 335–346.PubMedCrossRefGoogle Scholar
  12. 12.
    Fox, R. J., Miller, D. H., Phillips, J. T., Hutchinson, M., Havrdova, E., Kita, M., et al. (2012). Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. New England Journal of Medicine, 367, 1087–1097.PubMedCrossRefGoogle Scholar
  13. 13.
    Freedman, M. S., Bar-Or, A., Atkins, H. L., Karussis, D., Frassoni, F., Lazarus, H., et al. (2010). The therapeutic potential of mesenchymal stem cell transplantation as a treatment for multiple sclerosis: Consensus report of the International MSCT Study Group. Multiple Sclerosis, 16, 503–510.PubMedCrossRefGoogle Scholar
  14. 14.
    Zamboni, P., Menegatti, E., Galeotti, R., Malagoni, A. M., Tacconi, G., Dall’Ara, S., et al. (2009). The value of cerebral Doppler venous haemodynamics in the assessment of multiple sclerosis. Journal of the Neurological Sciences, 282, 21–27.PubMedCrossRefGoogle Scholar
  15. 15.
    Al-Omari, M. H., & Rousan, L. A. (2010). Internal jugular vein morphology and hemodynamics in patients with multiple sclerosis. International Angiology, 29, 115–120.PubMedGoogle Scholar
  16. 16.
    Baracchini, C., Perini, P., Calabrese, M., Causin, F., Rinaldi, F., & Gallo, P. (2011). No evidence of chronic cerebrospinal venous insufficiency at multiple sclerosis onset. Annals of Neurology, 69, 90–99.PubMedCrossRefGoogle Scholar
  17. 17.
    Centonze, D., Floris, R., Stefanini, M., Rossi, S., Fabiano, S., Castelli, M., et al. (2011). Proposed chronic cerebrospinal venous insufficiency criteria do not predict multiple sclerosis risk or severity. Annals of Neurology, 70, 51–58.PubMedCrossRefGoogle Scholar
  18. 18.
    Zivadinov, R., Marr, K., Cutter, G., Ramanathan, M., Benedict, R. H., Kennedy, C., et al. (2011). Prevalence, sensitivity, and specificity of chronic cerebrospinal venous insufficiency in MS. Neurology, 77, 138–144.PubMedCrossRefGoogle Scholar
  19. 19.
    Feeny, D., Furlong, W., Torrance, G. W., Goldsmith, C. H., Zhu, Z., DePauw, S., et al. (2002). Multiattribute and single-attribute utility functions for the health utilities index mark 3 system. Medical Care, 40, 113–128.PubMedCrossRefGoogle Scholar
  20. 20.
    Torrance, G. W. (1986). Measurement of health state utilities for economic appraisal. J Health Economics, 5, 1–30.CrossRefGoogle Scholar
  21. 21.
    Torrance, G. W., Boyle, M. H., & Horwood, S. P. (1982). Application of multi-attribute utility theory to measure social preferences for health states. Operations Research, 30, 1043–1069.PubMedCrossRefGoogle Scholar
  22. 22.
    Brazier, J., Ratcliffe, J., Salomon, J. A., & Tsuchiya, A. (2007). Measuring and valuing health benefits for economic evaluation. New York: Oxford University Press Inc.Google Scholar
  23. 23.
    Mavranezouli, I., Brazier, J. E., Young, T. A., & Barkham, M. (2011). Using Rasch analysis to form plausible health states amenable to valuation: The development of CORE-6D from a measure of common mental health problems (CORE-OM). Quality of Life Research, 20, 321–333.PubMedCrossRefGoogle Scholar
  24. 24.
    Kind, P. (2005). Values and valuation in the measurement of HRQoL. In P. Fayers & D. Hays (Eds.), Assessing quality of life in clinical trials (pp. 391–404). New York: Oxford University Press Inc.Google Scholar
  25. 25.
    Feeny, D., Torrance, G. W., & Furlong, W. (1996). Health utilities index. In B. Spilker (Ed.), Quality of life and pharmaeconomics in clinicals trials (pp. 239–252). Philadelphia: Lippincott-Raven Publishers.Google Scholar
  26. 26.
    Feeny, D. (2005). Preference-based measures: Utility and quality-adjusted life years. In P. Fayers & D. Hays (Eds.), Assessing quality of life in clinical trials (pp. 405–429). New York: Oxford University Press Inc.Google Scholar
  27. 27.
    Guyatt, G. H., Feeny, D. H., & Patrick, D. L. (1993). Measuring health-related quality of life. Annals of Internal Medicine, 118, 622–629.PubMedCrossRefGoogle Scholar
  28. 28.
    Revicki, D. A., & Kaplan, R. M. (1993). Relationship between psychometric and utility-based approaches to the measurement of health-related quality of life. Quality of Life Research, 2, 477–487.PubMedCrossRefGoogle Scholar
  29. 29.
    Berzon, R., Mauskopf, J. A., & Simeon, G. P. (1996). Choosing a health profile (descriptive) and/or a patient-preference (utility) measure for a clinical trial. In B. Spilker (Ed.), Quality of life and pharmaeconomics in clinical trials (pp. 375–379). Philadelphia: Lippincott-Raven Publishers.Google Scholar
  30. 30.
    Feeny, D. H., & Torrance, G. W. (1989). Incorporating utility-based quality-of-life assessment measures in clinical trials. Two examples. Medical Care, 27, S190–S204.PubMedCrossRefGoogle Scholar
  31. 31.
    Torrance, G. W. (1987). Utility approach to measuring health-related quality of life. Journal of Chronic Diseases, 40, 593–603.PubMedCrossRefGoogle Scholar
  32. 32.
    Kind, P., Lafata, J. E., Matuszewski, K., & Raisch, D. (2009). The use of QALYs in clinical and patient decision-making: Issues and prospects. Value Health, 12(Suppl 1), S27–S30.PubMedCrossRefGoogle Scholar
  33. 33.
    Hawthorne, G., & Richardson, J. (2001). Measuring the value of program outcomes: A review of multiattribute utility measures. Expert Review of Pharmacoeconomics & Outcomes Research, 1, 215–228.CrossRefGoogle Scholar
  34. 34.
    Guyatt, G. H., Veldhuyzen Van Zanten, S. J., Feeny, D. H., & Patrick, D. L. (1989). Measuring quality of life in clinical trials: A taxonomy and review. Canadian Medical Association Journal, 140, 1441–1448.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Kuspinar, A., & Mayo, N. E. (2013). Do generic utility measures capture what is important to the quality of life of people with multiple sclerosis? Health and Quality of Life Outcomes, 11, 71.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Hemmett, L., Holmes, J., Barnes, M., & Russell, N. (2004). What drives quality of life in multiple sclerosis? QJM, 97, 671–676.PubMedCrossRefGoogle Scholar
  37. 37.
    Nicholl, C. R., Lincoln, N. B., Francis, V. M., & Stephan, T. F. (2001). Assessing quality of life in people with multiple sclerosis. Disability and Rehabilitation, 23, 597–603.PubMedCrossRefGoogle Scholar
  38. 38.
    Fisk, J. D., Brown, M. G., Sketris, I. S., Metz, L. M., Murray, T. J., & Stadnyk, K. J. (2005). A comparison of health utility measures for the evaluation of multiple sclerosis treatments. Journal of Neurology, Neurosurgery and Psychiatry, 76, 58–63.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Williams, A. (2005). The EuroQol instrument. In P. Kind, R. Brooks, & R. Rabin (Eds.), EQ-5D concepts and methods: A developmental history (pp. 1–17). Dordrecht: Springers.CrossRefGoogle Scholar
  40. 40.
    Poissant, L., Mayo, N. E., Wood-Dauphinee, S., & Clarke, A. E. (2003). The development and preliminary validation of a Preference-Based Stroke Index (PBSI). Health and Quality of Life Outcomes, 1, 43.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Pickard, A. S., Shaw, J. W., Lin, H. W., Trask, P. C., Aaronson, N., Lee, T. A., et al. (2009). A patient-based utility measure of health for clinical trials of cancer therapy based on the European Organization for the Research and Treatment of Cancer Quality of Life Questionnaire. Value Health, 12, 977–988.PubMedCrossRefGoogle Scholar
  42. 42.
    Rowen, D., Brazier, J., Young, T., Gaugris, S., Craig, B. M., King, M. T., et al. (2011). Deriving a preference-based measure for cancer using the EORTC QLQ-C30. Value Health, 14, 721–731.PubMedCrossRefGoogle Scholar
  43. 43.
    Melsop, K. A., Boothroyd, D. B., & Hlatky, M. A. (2003). Quality of life and time trade-off utility measures in patients with coronary artery disease. American Heart Journal, 145, 36–41.PubMedCrossRefGoogle Scholar
  44. 44.
    McKenna, S. P., Ratcliffe, J., Meads, D. M., & Brazier, J. E. (2008). Development and validation of a preference based measure derived from the Cambridge Pulmonary Hypertension Outcome Review (CAMPHOR) for use in cost utility analyses. Health and Quality of Life Outcomes, 6, 65.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Revicki, D. A., Leidy, N. K., Brennan-Diemer, F., Sorensen, S., & Togias, A. (1998). Integrating patient preferences into health outcomes assessment: The multiattribute Asthma Symptom Utility Index. Chest, 114, 998–1007.PubMedCrossRefGoogle Scholar
  46. 46.
    Revicki, D. A., Leidy, N. K., Brennan-Diemer, F., Thompson, C., & Togias, A. (1998). Development and preliminary validation of the multiattribute Rhinitis Symptom Utility Index. Quality of Life Research, 7, 693–702.PubMedCrossRefGoogle Scholar
  47. 47.
    Brazier, J., Czoski-Murray, C., Roberts, J., Brown, M., Symonds, T., & Kelleher, C. (2008). Estimation of a preference-based index from a condition-specific measure: The King’s Health Questionnaire. Medical Decision Making, 28, 113–126.PubMedCrossRefGoogle Scholar
  48. 48.
    Torrance, G. W., Keresteci, M. A., Casey, R. W., Rosner, A. J., Ryan, N., & Breton, M. C. (2004). Development and initial validation of a new preference-based disease-specific health-related quality of life instrument for erectile function. Quality of Life Research, 13, 349–359.PubMedCrossRefGoogle Scholar
  49. 49.
    Guyatt, G. H., Bombardier, C., & Tugwell, P. X. (1986). Measuring disease-specific quality of life in clinical trials. Canadian Medical Association Journal, 134, 889–895.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Brazier, J., & Fitzpatrick, R. (2002). Measures of health-related quality of life in an imperfect world: A comment on Dowie. Health Economics, 11, 17–19.PubMedCrossRefGoogle Scholar
  51. 51.
    Patrick, D. L., Burke, L. B., Powers, J. H., Scott, J. A., Rock, E. P., Dawisha, S., et al. (2007). Patient-reported outcomes to support medical product labeling claims: FDA perspective. Value Health, 10(Suppl 2), S125–S137.PubMedCrossRefGoogle Scholar
  52. 52.
    Lin, F. J., Longworth, L., Pickard, A. S. (2013). Evaluation of content on EQ-5D as compared to disease-specific utility measures. Quality Life Research, 22(4), 853–874. Google Scholar
  53. 53.
    Mayo, N. (2008). Setting the agenda for multiple sclerosis rehabilitation research. Multiple Sclerosis, 14, 1154–1156.PubMedCrossRefGoogle Scholar
  54. 54.
    Freeman, J. A., Hobart, J. C., Langdon, D. W., & Thompson, A. J. (2000). Clinical appropriateness: A key factor in outcome measure selection: The 36 item short form health survey in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 68, 150–156.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Nortvedt, M. W., Riise, T., Myhr, K. M., & Nyland, H. I. (2000). Performance of the SF-36, SF-12, and RAND-36 summary scales in a multiple sclerosis population. Medical Care, 38, 1022–1028.PubMedCrossRefGoogle Scholar
  56. 56.
    Kikuchi, H., Mifune, N., Niino, M., Ohbu, S., Kira, J., Kohriyama, T., et al. (2011). Impact and characteristics of quality of life in Japanese patients with multiple sclerosis. Quality of Life Research, 20, 119–131.PubMedCrossRefGoogle Scholar
  57. 57.
    Twiss, J., Doward, L. C., McKenna, S. P., & Eckert, B. (2010). Interpreting scores on multiple sclerosis-specific patient reported outcome measures (the PRIMUS and U-FIS). Health and Quality of Life Outcomes, 8, 117.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Ruta, D. A., Garratt, A. M., & Russell, I. T. (1999). Patient centred assessment of quality of life for patients with four common conditions. Quality Health Care, 8, 22–29.CrossRefGoogle Scholar
  59. 59.
    Sullivan, M. J., Edgley, K., & Dehoux, E. (1990). A survey of multiple sclerosis: I. Perceived cognitive problems and compensatory strategy use. Canadian Journal of Rehabilitation, 4, 99–105.Google Scholar
  60. 60.
    Marrie, R. A., Miller, D. M., Chelune, G. J., & Cohen, J. A. (2003). Validity and reliability of the MSQLI in cognitively impaired patients with multiple sclerosis. Multiple Sclerosis, 9, 621–626.PubMedCrossRefGoogle Scholar
  61. 61.
    Paltamaa, J., West, H., Sarasoja, T., Wikstrom, J., & Malkia, E. (2005). Reliability of physical functioning measures in ambulatory subjects with MS. Physiotherapy Research International, 10, 93–109.PubMedCrossRefGoogle Scholar
  62. 62.
    Kurtzke, J. F. (1983). Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology, 33, 1444–1452.PubMedCrossRefGoogle Scholar
  63. 63.
    Ruta, D. A., Garratt, A. M., Leng, M., Russell, I. T., & MacDonald, L. M. (1994). A new approach to the measurement of quality of life. The Patient-Generated Index. Medical Care, 32, 1109–1126.PubMedCrossRefGoogle Scholar
  64. 64.
    Schumacker, R. E. (1996). Editor’s note. Structural Equation Modeling: A Multidisciplinary Journal, 3, 1–2.CrossRefGoogle Scholar
  65. 65.
    Wright, B. D. (1996). Comparing Rasch measurement and factor analysis. Structural Equation Modeling: A Multidisciplinary Journal, 3, 3–24.CrossRefGoogle Scholar
  66. 66.
    Chang, C. H. (1996). Finding two dimensions in MMPI-2 depression. Structural Equation Modeling: A Multidisciplinary Journal, 3, 41–49.CrossRefGoogle Scholar
  67. 67.
    Young, T., Yang, Y., Brazier, J. E., Tsuchiya, A., & Coyne, K. (2009). The first stage of developing preference-based measures: constructing a health-state classification using Rasch analysis. Quality of Life Research, 18, 253–265.PubMedCrossRefGoogle Scholar
  68. 68.
    Andrich, D., Lyne, A., Sheridan, B., & Luo, G. (2004). Rasch unidimensional measurement models (RUMM) 2020. Perth, Western Australia: Rumm Laboratory Pty Ltd. Google Scholar
  69. 69.
    Pallant, J. F., & Tennant, A. (2007). An introduction to the Rasch measurement model: An example using the Hospital Anxiety and Depression Scale (HADS). British Journal of Clinical Psychology, 46, 1–18.PubMedCrossRefGoogle Scholar
  70. 70.
    Gibbons, C. J., Mills, R. J., Thornton, E. W., Ealing, J., Mitchell, J. D., Shaw, P. J., et al. (2011). Rasch analysis of the hospital anxiety and depression scale (HADS) for use in motor neurone disease. Health and Quality of Life Outcomes, 9, 82.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Bond, T. G., & Fox, C. M. (2007). Applying the Rasch model: Fundamental measurement in the human science. New Jersey: Lawrence Erlbaum Associates Inc.Google Scholar
  72. 72.
    Allen, M. J., & Yen, W. M. (2002). Introduction to measurement theory. Long Grove: Waveland Press Inc.Google Scholar
  73. 73.
    Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155–159.PubMedCrossRefGoogle Scholar
  74. 74.
    Broome, H. (2012) The association between cognition, social functioning, physical impairment, and relationship factors in individuals with multiple sclerosis (pp. 1–195). The University of Hull.Google Scholar
  75. 75.
    Mead, D. E. (2002). Marital distress, co-occurring depression, and marital therapy: A review. Journal of Marital and Family Therapy, 28, 299–314.PubMedCrossRefGoogle Scholar
  76. 76.
    Lee, E. K. O., & Oh, H. (2012). Marital satisfaction among adults with disabilities in South Korea. Journal of Disability Studies Policy, 23, 215–224.CrossRefGoogle Scholar
  77. 77.
    Mayo, N. E., Hum, S., & Kuspinar, A. (2013). Methods and measures: What’s new for MS? Multiple Sclerosis, 19, 709–713.PubMedCrossRefGoogle Scholar
  78. 78.
    Krupp, L. B., & Pollina, D. A. (1996). Mechanisms and management of fatigue in progressive neurological disorders. Current Opinion in Neurology, 9, 456–460.PubMedCrossRefGoogle Scholar
  79. 79.
    Fisk, J. D., Pontefract, A., Ritvo, P. G., Archibald, C. J., & Murray, T. J. (1994). The impact of fatigue on patients with multiple sclerosis. Canadian Journal of Neurological Sciences, 21, 9–14.PubMedGoogle Scholar
  80. 80.
    Freal, J. E., Kraft, G. H., & Coryell, J. K. (1984). Symptomatic fatigue in multiple sclerosis. Archives of Physical Medicine and Rehabilitation, 65, 135–138.PubMedGoogle Scholar
  81. 81.
    Murray, T. J. (1985). Amantadine therapy for fatigue in multiple sclerosis. Canadian Journal of Neurological Sciences, 12, 251–254.PubMedGoogle Scholar
  82. 82.
    Deloire, M. S., Bonnet, M. C., Salort, E., Arimone, Y., Boudineau, M., Petry, K. G., et al. (2006). How to detect cognitive dysfunction at early stages of multiple sclerosis? Multiple Sclerosis, 12, 445–452.PubMedCrossRefGoogle Scholar
  83. 83.
    Peyser, J. M., Edwards, K. R., Poser, C. M., & Filskov, S. B. (1980). Cognitive function in patients with multiple sclerosis. Archives of Neurology, 37, 577–579.PubMedCrossRefGoogle Scholar
  84. 84.
    Brazier, J., Akehurst, R., Brennan, A., Dolan, P., Claxton, K., McCabe, C., et al. (2005). Should patients have a greater role in valuing health states? Applied Health Economics and Health Policy, 4, 201–208.PubMedCrossRefGoogle Scholar
  85. 85.
    Ubel, P. A., Loewenstein, G., & Jepson, C. (2003). Whose quality of life? A commentary exploring discrepancies between health state evaluations of patients and the general public. Quality of Life Research, 12, 599–607.PubMedCrossRefGoogle Scholar
  86. 86.
    Whitehead, S. J., & Ali, S. (2010). Health outcomes in economic evaluation: The QALY and utilities. British Medical Bulletin, 96, 5–21.PubMedCrossRefGoogle Scholar
  87. 87.
    Stallard, J., & Major, R. E. (1995). The influence of orthosis stiffness on paraplegic ambulation and its implications for functional electrical stimulation (FES) walking systems. Prosthetics and Orthotics International, 19, 108–114.PubMedGoogle Scholar
  88. 88.
    Brissot, R., Gallien, P., Le Bot, M. P., Beaubras, A., Laisne, D., Beillot, J., et al. (2000). Clinical experience with functional electrical stimulation-assisted gait with Parastep in spinal cord-injured patients. Spine (Phila Pa 1976), 25, 501–508.CrossRefGoogle Scholar
  89. 89.
    Thoumie, P., Perrouin-Verbe, B., Le, C. G., Bedoiseau, M., Busnel, M., Cormerais, A., et al. (1995). Restoration of functional gait in paraplegic patients with the RGO-II hybrid orthosis. A multicentre controlled study. I. Clinical evaluation. Paraplegia, 33, 647–653.PubMedCrossRefGoogle Scholar
  90. 90.
    Rothman, M., Burke, L., Erickson, P., Leidy, N. K., Patrick, D. L., & Petrie, C. D. (2009). Use of existing patient-reported outcome (PRO) instruments and their modification: The ISPOR good research practices for evaluating and documenting content validity for the use of existing instruments and their modification PRO task force report. Value Health, 12, 1075–1083.PubMedCrossRefGoogle Scholar
  91. 91.
    Food, U. S. (2009). Drug administration: Guidance for industry: Patient-reported outcome measures: Use in medical product development to support labeling claims. Federal Register, 74, 65132–65133.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ayse Kuspinar
    • 1
  • Lois Finch
    • 2
  • Simon Pickard
    • 3
  • Nancy E. Mayo
    • 1
    • 2
  1. 1.Faculty of Medicine, School of Physical and Occupational TherapyMcGill UniversityMontrealCanada
  2. 2.Division of Clinical EpidemiologyMcGill University Health CenterMontrealCanada
  3. 3.Department of Pharmacy Systems, Outcomes and Policy, Center for Pharmacoepidemiology and Pharmacoeconomic ResearchUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations