Quality of Life Research

, Volume 22, Issue 9, pp 2443–2454 | Cite as

Psychometric evaluation of the EORTC computerized adaptive test (CAT) fatigue item pool

  • Morten Aa. Petersen
  • Johannes M. Giesinger
  • Bernhard Holzner
  • Juan I. Arraras
  • Thierry Conroy
  • Eva-Maria Gamper
  • Madeleine T. King
  • Irma M. Verdonck-de Leeuw
  • Teresa Young
  • Mogens Groenvold



Fatigue is one of the most common symptoms associated with cancer and its treatment. To obtain a more precise and flexible measure of fatigue, the EORTC Quality of Life Group has developed a computerized adaptive test (CAT) measure of fatigue. This is part of an ongoing project developing a CAT version of the widely used EORTC QLQ-C30 questionnaire.


Based on the literature search and evaluations by experts and patients, 41 new fatigue items were developed (in addition to the three QLQ-C30 fatigue items). Psychometric properties of the items, including evaluations of dimensionality, fit to item response theory (IRT) model, and differential item functioning (DIF), were assessed in an international sample of cancer patients.


Responses were obtained from 1,321 cancer patients coming from eight countries. Factor analysis showed that 37 of the items could be included in a unidimensional model (RMSEA = 0.098, TLI = 0.995, CFI = 0.920). Of the 37 items, two were deleted because of poor fit to the IRT model forming the basis for the CAT, and one because of DIF between cancer sites.


We have established a 34-item fatigue bank allowing for more precise and flexible measurement of fatigue, while still being backward compatible with the QLQ-C30 fatigue scale.


Computerized adaptive test EORTC QLQ-C30 Fatigue Item banking Item response theory Quality of life 



Computerized adaptive test


Comparative Fit Index


Differential item functioning


European Organisation for Research and Treatment of Cancer


Generalized partial credit model


Health-related quality of life


Item response theory


Patient-reported outcome


Patient Reported Outcome Measurement Information System


Quality of Life Questionnaire Core 30


Root mean square error of approximation


Tucker–Lewis Index



The study was funded by grants from the EORTC Quality of Life Group. The authors would like to thank the patients responding to our items and our collaborators for collecting these essential patient responses.


  1. 1.
    Aaronson, N. K., Ahmedzai, S., Bergman, B., Bullinger, M., Cull, A., Duez, N. J., et al. (1993). The European Organization for Research and Treatment of Cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology. Journal of the National Cancer Institute, 85(5), 365–376.PubMedCrossRefGoogle Scholar
  2. 2.
    Fayers, P., & Bottomley, A. (2002). Quality of life research within the EORTC-the EORTC QLQ - C30. European Organisation for Research and Treatment of Cancer. European Journal of Cancer, 38(Suppl 4), S125–S133.PubMedCrossRefGoogle Scholar
  3. 3.
    Wainer, H. (2000). Computerized Adaptive testing: A primer (2nd ed.). Mahwah, New Jersey: Lawrence Erlbaum Associates, Inc.Google Scholar
  4. 4.
    Bjorner, J. B., Chang, C. H., Thissen, D., & Reeve, B. B. (2007). Developing tailored instruments: Item banking and computerized adaptive assessment. Quality of Life Research, 16(Suppl 1), 95–108.PubMedCrossRefGoogle Scholar
  5. 5.
    Cella, D., Gershon, R., Lai, J. S., & Choi, S. (2007). The future of outcomes measurement: Item banking, tailored short-forms, and computerized adaptive assessment. Quality of Life Research, 16(Suppl 1), 133–141.PubMedCrossRefGoogle Scholar
  6. 6.
    Fliege, H., Becker, J., Walter, O. B., Bjorner, J. B., Klapp, B. F., & Rose, M. (2005). Development of a computer-adaptive test for depression (D-CAT). Quality of Life Research, 14(10), 2277–2291.PubMedCrossRefGoogle Scholar
  7. 7.
    Lai, J. S., Cella, D., Dineen, K., Bode, R., Von Roenn, J., Gershon, R. C., et al. (2005). An item bank was created to improve the measurement of cancer-related fatigue. Journal of Clinical Epidemiology, 58(2), 190–197.PubMedCrossRefGoogle Scholar
  8. 8.
    Schwartz, C., Welch, G., Santiago-Kelley, P., Bode, R., & Sun, X. (2006). Computerized adaptive testing of diabetes impact: A feasibility study of Hispanics and non-Hispanics in an active clinic population. Quality of Life Research, 15(9), 1503–1518.PubMedCrossRefGoogle Scholar
  9. 9.
    Ware, J. E., Jr, Kosinski, M., Bjorner, J. B., Bayliss, M. S., & Batenhorst, A. (2003). Applications of computerized adaptive testing (CAT) to the assessment of headache impact. Quality of Life Research, 12(8), 935–952.PubMedCrossRefGoogle Scholar
  10. 10.
    The Patient-Reported Outcomes Measurement Information System (PROMIS). http://www.nihpromis.org. Accessed March 2011.
  11. 11.
    Garcia, S. F., Cella, D., Clauser, S. B., Flynn, K. E., Lad, T., Lai, J. S., et al. (2007). Standardizing patient-reported outcomes assessment in cancer clinical trials: A patient-reported outcomes measurement information system initiative. Journal of Clinical Oncology, 25(32), 5106–5112.PubMedCrossRefGoogle Scholar
  12. 12.
    Mock, V. (2001). Fatigue management: Evidence and guidelines for practice. Cancer, 92(6 Suppl), 1699–1707.PubMedCrossRefGoogle Scholar
  13. 13.
    Vogelzang, N. J., Breitbart, W., Cella, D., Curt, G. A., Groopman, J. E., Horning, S. J., et al. (1997). Patient, caregiver, and oncologist perceptions of cancer-related fatigue: results of a tripart assessment survey. The Fatigue Coalition. Seminars in Hematology, 34(3 Suppl 2), 4–12.PubMedGoogle Scholar
  14. 14.
    Giesinger, J. M., Petersen, M. Aa., Groenvold, M., Aaronson, N. K., Arraras, J. I., Conroy, T., et al. (2011). Cross-cultural development of an item list for computer-adaptive testing of fatigue in oncological patients. Health and Quality of Life Outcomes, 9, 19.PubMedCrossRefGoogle Scholar
  15. 15.
    Petersen, M. Aa., Groenvold, M., Aaronson, N. K., Chie, W.-C., Conroy, T., Costantini, A., et al. (2010). Development of computerised adaptive testing (CAT) for the EORTC QLQ-C30 dimensions—General approach and initial results for physical functioning. European Journal of Cancer, 46, 1352–1358.PubMedCrossRefGoogle Scholar
  16. 16.
    Petersen, M. Aa., Groenvold, M., Aaronson, N. K., Chie, W.-C., Conroy, T., Costantini, A., et al. (2011). Development of computerized adaptive testing (CAT) for the EORTC QLQ-C30 physical functioning dimension. Quality of Life Research, 20(4), 479–490.PubMedCrossRefGoogle Scholar
  17. 17.
    Choi, S. W., Cook, K. F., & Dodd, B. G. (1997). Parameter recovery for the partial credit model using MULTILOG. Journal of Outcome Measurement, 1(2), 114–142.PubMedGoogle Scholar
  18. 18.
    Fayers, P. M. (2007). Applying item response theory and computer adaptive testing: The challenges for health outcomes assessment. Quality of Life Research, 16(Suppl 1), 187–194.PubMedCrossRefGoogle Scholar
  19. 19.
    Muraki, E., & Bock, R. D. (1996). PARSCALE—IRT based test scoring and item analysis for graded open-ended exercises and performance tasks. Chicago: Scientific Software International, Inc.Google Scholar
  20. 20.
    Muthen, L. K., & Muthen, B. O. (2002). Mplus user’s guide (2nd ed.). Los Angeles, CA: Muthen & Muthen.Google Scholar
  21. 21.
    Cattell, R. B. (1966). Scree test for number of factors. Multivariate Behavioral Research, 1(2), 245–276.CrossRefGoogle Scholar
  22. 22.
    Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods & Research, 21(2), 230–258.CrossRefGoogle Scholar
  23. 23.
    Kline, R. B. (2005). Principles and practice of structural equation modelling (2nd ed.). New York: The Guilford Press.Google Scholar
  24. 24.
    Bjorner, J. B., Kosinski, M., & Ware, J. E., Jr. (2003). Calibration of an item pool for assessing the burden of headaches: An application of item response theory to the headache impact test (HIT). Quality of Life Research, 12(8), 913–933.PubMedCrossRefGoogle Scholar
  25. 25.
    Junker, B. W., & Sijtsma, K. (2000). Latent and manifest monotonicity in item response models. Applied Psychological Measurement, 24(1), 65–81.CrossRefGoogle Scholar
  26. 26.
    Muraki, E. (1997). A generalized partial credit model. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 153–168). Berlin: Springer.CrossRefGoogle Scholar
  27. 27.
    Samejima, F. (1997). Graded response model. In: Linden, W. V. D. & Hambleton, R. K. (Eds.), Handbook of modern item response theory (pp. 85–100). Berlin: Springer.Google Scholar
  28. 28.
    Maydeuolivares, A., Drasgow, F., & Mead, A. D. (1994). Distinguishing among parametric item response models for polychotomous ordered data. Applied Psychological Measurement, 18(3), 245–256.CrossRefGoogle Scholar
  29. 29.
    Bond, T. G., & Fox, C. M. (2007). Applying the Rasch model: Fundamental measurement in the human sciences (2nd ed.). New Jersey: Lawrence Erlbaum Associates, Inc.Google Scholar
  30. 30.
    Wright, B. D., & Linacre, J. M. (1994). Reasonable mean-square fit values. Rasch Measurement Transactions, 8(3), 370.Google Scholar
  31. 31.
    Holland, P. W., & Wainer, H. (1993). Differential item functioning. Hilsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  32. 32.
    French, A. W., & Miller, T. R. (1996). Logistic regression and its use in detecting differential item functioning in polytomous items. Journal of Educational Measurement, 33(3), 315–332.CrossRefGoogle Scholar
  33. 33.
    Petersen, M. Aa., Groenvold, M., Bjorner, J. B., Aaronson, N. K., Conroy, T., Cull, A., et al. (2003). Use of differential item functioning analysis to assess the equivalence of translations of a questionnaire. Quality of Life Research, 12(4), 373–385.PubMedCrossRefGoogle Scholar
  34. 34.
    Bjorner, J. B., Kreiner, S., Ware, J. E., Damsgaard, M. T., & Bech, P. (1998). Differential item functioning in the Danish translation of the SF-36. Journal of Clinical Epidemiology, 51(11), 1189–1202.PubMedCrossRefGoogle Scholar
  35. 35.
    Gierl, M. J., Rogers, W. T., & Klinger, D. A. (1999). Using statistical and judgmental reviews to identify and interpret translation differential item functioning. Alberta Journal of Education and Research, 45(4), 353–376.Google Scholar
  36. 36.
    Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78(3), 691–692.CrossRefGoogle Scholar
  37. 37.
    Scott, N. W., Fayers, P. M., Aaronson, N. K., Bottomley, A., de Graeff, A., Groenvold, M., et al. (2009). The practical impact of differential item functioning analyses in a health-related quality of life instrument. Quality of Life Research, 18(8), 1125–1130.PubMedCrossRefGoogle Scholar
  38. 38.
    Hart, D. L., Deutscher, D., Crane, P. K., & Wang, Y. C. (2009). Differential item functioning was negligible in an adaptive test of functional status for patients with knee impairments who spoke English or Hebrew. Quality of Life Research, 18(8), 1067–1083.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Morten Aa. Petersen
    • 1
  • Johannes M. Giesinger
    • 2
  • Bernhard Holzner
    • 2
  • Juan I. Arraras
    • 3
  • Thierry Conroy
    • 4
  • Eva-Maria Gamper
    • 2
  • Madeleine T. King
    • 5
  • Irma M. Verdonck-de Leeuw
    • 6
  • Teresa Young
    • 7
  • Mogens Groenvold
    • 1
    • 8
  1. 1.The Research Unit, Department of Palliative MedicineBispebjerg University HospitalCopenhagenDenmark
  2. 2.Department of Psychiatry and PsychotherapyInnsbruck Medical UniversityInnsbruckAustria
  3. 3.Medical Oncology DepartmentHospital of NavarrePamplonaSpain
  4. 4.Medical Oncology DepartmentCentre Alexis VautrinVandoeuvre-lès-NancyFrance
  5. 5.Quality of Life Office, Psycho-oncology Co-operative Research Group, School of PsychologyUniversity of SydneySydneyAustralia
  6. 6.Clinical PsychologyVU UniversityAmsterdamThe Netherlands
  7. 7.Lynda Jackson Macmillan CentreMount Vernon Cancer CentreMiddxUK
  8. 8.Institute of Public HealthUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations