Quality of Life Research

, Volume 22, Issue 4, pp 853–874 | Cite as

Evaluation of content on EQ-5D as compared to disease-specific utility measures

  • Fang-Ju Lin
  • Louise Longworth
  • A. Simon Pickard



The goal of this study was to appraise the extent of unique content on disease-specific preference-based measures (DSPMs) when contrasted with the EQ-5D using published studies and to inform whether EQ-5D could be inadequate as a utility measure in its content coverage for a given disease-specific application.


A structured search of published literature was performed using PubMed and EMBASE/Medline database from Jan 1, 1990 to Mar 31, 2011. Articles were eligible for inclusion if algorithms were developed to convert components from disease-specific measures into utility scores.


Of 1,029 articles identified, 50 studies satisfied the inclusion criteria. The most frequent conditions where DSPMs were developed included cancer (12 studies), coronary artery disease (4 studies), osteoarthritis, rheumatoid arthritis (3 studies of each), obesity, and stroke (2 studies of each). Most studies involved mapping items or scores from disease-specific non-preference-based measures onto a preference-based measure of health such as the EQ-5D. A substantial number of DSPMs appeared to include unique content not covered by EQ-5D dimensions.


Several conditions were identified as potential areas where the richness of the EQ-5D descriptive system could be enhanced. It is yet unclear whether added dimension(s) would contribute unique explained variance to a utility score. Given the resources required to rigorously develop a utility measure, the need for such measures should be carefully vetted.


Disease-specific measures EQ-5D Utility Preferences Mapping 



Simon Pickard and Louise Longworth are members of the EuroQol Group. An earlier draft of this manuscript was presented as a discussion paper at the 27th EuroQol Plenary Meeting in Athens, Greece, in September, 2010.


  1. 1.
    Rasanen, P., Roine, E., Sintonen, H., Semberg-Konttinen, V., Ryynanen, O. P., & Roine, R. (2006). Use of quality-adjusted life years for the estimation of effectiveness of health care: A systematic literature review. International Journal of Technology Assessment in Health Care, 22(2), 235–241.PubMedCrossRefGoogle Scholar
  2. 2.
    Brooks, R. (1996). EuroQol: The current state of play. Health Policy, 37(1), 53–72.PubMedCrossRefGoogle Scholar
  3. 3.
    Herdman, M., Gudex, C., Lloyd, A., Janssen, M., Kind, P., Parkin, D., et al. (2011). Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Quality of Life Research, 20(10), 1727–1736.PubMedCrossRefGoogle Scholar
  4. 4.
    Brazier, J., Roberts, J., & Deverill, M. (2002). The estimation of a preference-based measure of health from the SF-36. Journal of Health Economics, 21(2), 271–292.PubMedCrossRefGoogle Scholar
  5. 5.
    Brazier, J., Usherwood, T., Harper, R., & Thomas, K. (1998). Deriving a preference-based single index from the UK SF-36 Health Survey. Journal of Clinical Epidemiology, 51(11), 1115–1128.PubMedCrossRefGoogle Scholar
  6. 6.
    Brazier, J. E., Yang, Y., Tsuchiya, A., & Rowen, D. L. (2010). A review of studies mapping (or cross walking) non-preference based measures of health to generic preference-based measures. The European Journal of Health Economics, 11(2), 215–225.PubMedCrossRefGoogle Scholar
  7. 7.
    Patrick, D. L., & Deyo, R. A. (1989). Generic and disease-specific measures in assessing health status and quality of life. Medical Care, 27(3 Suppl), S217–S232.PubMedCrossRefGoogle Scholar
  8. 8.
    Brazier, J., & Tsuchiya, A. (2010). Preference-based condition-specific measures of health: What happens to cross programme comparability? Health Economics, 19(2), 125–129.PubMedCrossRefGoogle Scholar
  9. 9.
    Yang, Y., Brazier, J., Tsuchiya, A., & Coyne, K. (2009). Estimating a preference-based single index from the Overactive Bladder Questionnaire. Value in Health, 12(1), 159–166.PubMedCrossRefGoogle Scholar
  10. 10.
    Kulkarni, A. V. (2006). Distribution-based and anchor-based approaches provided different interpretability estimates for the Hydrocephalus Outcome Questionnaire. Journal of Clinical Epidemiology, 59(2), 176–184.PubMedCrossRefGoogle Scholar
  11. 11.
    Tsuchiya, A., Brazier, J., McColl, E., & Parkin, D. (2002). Deriving preference-based single indices from non-preference based condition-specific instruments: Converting AQLQ into EQ5D indices. Germany: University Library of Munich.Google Scholar
  12. 12.
    Stolk, E. A., & Busschbach, J. J. (2003). Validity and feasibility of the use of condition-specific outcome measures in economic evaluation. Quality of Life Research, 12(4), 363–371.PubMedCrossRefGoogle Scholar
  13. 13.
    Brazier, J. E., Roberts, J., Platts, M., & Zoellner, Y. F. (2005). Estimating a preference-based index for a menopause specific health quality of life questionnaire. Health and Quality of Life Outcomes, 3, 13.PubMedCrossRefGoogle Scholar
  14. 14.
    Petrillo, J., & Cairns, J. (2011). Development of the EXACT-U: A preference-based measure to report COPD exacerbation utilities. Value in Health, 14(4), 546–554.PubMedCrossRefGoogle Scholar
  15. 15.
    Kind, P., & Macarn, S. (2005). Eliciting social preference weights for Functional Assessment of Cancer Therapy-Lung health states. Pharmacoeconomics, 23(11), 1143–1153.PubMedCrossRefGoogle Scholar
  16. 16.
    Young, T. A., Rowen, D., Norquist, J., & Brazier, J. E. (2010). Developing preference-based health measures: Using Rasch analysis to generate health state values. Quality of Life Research, 19(6), 907–917.PubMedCrossRefGoogle Scholar
  17. 17.
    Stevens, K. J., Brazier, J. E., McKenna, S. P., Doward, L. C., & Cork, M. J. (2005). The development of a preference-based measure of health in children with atopic dermatitis. British Journal of Dermatology, 153(2), 372–377.PubMedCrossRefGoogle Scholar
  18. 18.
    Lamers, L. M., Uyl-de Groot, C. A., & Buijt, I. (2007). The use of disease-specific outcome measures in cost-utility analysis: the development of Dutch societal preference weights for the FACT-L scale. Pharmacoeconomics, 25(7), 591–603.PubMedCrossRefGoogle Scholar
  19. 19.
    McKenna, S. P., Ratcliffe, J., Meads, D. M., & Brazier, J. E. (2008). Development and validation of a preference based measure derived from the Cambridge Pulmonary Hypertension Outcome Review (CAMPHOR) for use in cost utility analyses. Health and Quality of Life Outcomes, 6, 65.PubMedCrossRefGoogle Scholar
  20. 20.
    Brazier, J., Czoski-Murray, C., Roberts, J., Brown, M., Symonds, T., & Kelleher, C. (2008). Estimation of a preference-based index from a condition-specific measure: The King’s Health Questionnaire. Medical Decision Making, 28(1), 113–126.PubMedCrossRefGoogle Scholar
  21. 21.
    Poole, C. D., Connolly, M. P., Nielsen, S. K., Currie, C. J., & Marteau, P. (2010). A comparison of physician-rated disease severity and patient reported outcomes in mild to moderately active ulcerative colitis. Journal of Crohn’s and Colitis, 4(3), 275–282.PubMedCrossRefGoogle Scholar
  22. 22.
    Grimison, P. S., Simes, R. J., Hudson, H. M., & Stockler, M. R. (2009). Deriving a patient-based utility index from a cancer-specific quality of life questionnaire. Value in Health, 12(5), 800–807.PubMedCrossRefGoogle Scholar
  23. 23.
    Kontodimopoulos, N., Aletras, V. H., Paliouras, D., & Niakas, D. (2009). Mapping the cancer-specific EORTC QLQ-C30 to the preference-based EQ-5D, SF-6D, and 15D instruments. Value in Health, 12(8), 1151–1157.PubMedCrossRefGoogle Scholar
  24. 24.
    McKenzie, L., & van der Pol, M. (2009). Mapping the EORTC QLQ C-30 onto the EQ-5D instrument: The potential to estimate QALYs without generic preference data. Value in Health, 12(1), 167–171.PubMedCrossRefGoogle Scholar
  25. 25.
    Pickard, A. S., Shaw, J. W., Lin, H. W., Trask, P. C., Aaronson, N., Lee, T. A., et al. (2009). A patient-based utility measure of health for clinical trials of cancer therapy based on the European Organization for the Research and Treatment of Cancer Quality of Life Questionnaire. Value in Health, 12(6), 977–988.PubMedCrossRefGoogle Scholar
  26. 26.
    Wu, E. Q., Mulani, P., Farrell, M. H., & Sleep, D. (2007). Mapping FACT-P and EORTC QLQ-C30 to patient health status measured by EQ-5D in metastatic hormone-refractory prostate cancer patients. Value in Health, 10(5), 408–414.PubMedCrossRefGoogle Scholar
  27. 27.
    Brazier, J. E., Kolotkin, R. L., Crosby, R. D., & Williams, G. R. (2004). Estimating a preference-based single index for the Impact of Weight on Quality of Life-Lite (IWQOL-Lite) instrument from the SF-6D. Value in Health, 7(4), 490–498.PubMedCrossRefGoogle Scholar
  28. 28.
    Melsop, K. A., Boothroyd, D. B., & Hlatky, M. A. (2003). Quality of life and time trade-off utility measures in patients with coronary artery disease. American Heart Journal, 145(1), 36–41.PubMedCrossRefGoogle Scholar
  29. 29.
    Sauerland, S., Weiner, S., Dolezalova, K., Angrisani, L., Noguera, C. M., García-Caballero, M., et al. (2009). Mapping utility scores from a disease-specific quality-of-life measure in bariatric surgery patients. Value in Health, 12(2), 364–370.PubMedCrossRefGoogle Scholar
  30. 30.
    Gudex, C. (1997). The descriptive system of the EuroQol instrument. In P. Kind, R. Brooks, & R. Rabin (Eds.), EQ-5D concepts and methods: A developmental history. Rotterdam, The Netherlands: Springer.Google Scholar
  31. 31.
    Krabbe, P. F., Stouthard, M. E., Essink-Bot, M. L., & Bonsel, G. J. (1999). The effect of adding a cognitive dimension to the EuroQol multiattribute health-status classification system. Journal of Clinical Epidemiology, 52(4), 293–301.PubMedCrossRefGoogle Scholar
  32. 32.
    Wolfs, C. A., Dirksen, C. D., Kessels, A., Willems, D. C., Verhey, F. R., & Severens, J. L. (2007). Performance of the EQ-5D and the EQ-5D+C in elderly patients with cognitive impairments. Health and Quality of Life Outcomes, 5, 33.PubMedCrossRefGoogle Scholar
  33. 33.
    Goldsmith, K. A., Dyer, M. T., Buxton, M. J., & Sharples, L. D. (2010). Mapping of the EQ-5D index from clinical outcome measures and demographic variables in patients with coronary heart disease. Health and Quality of Life Outcomes, 8, 54.PubMedCrossRefGoogle Scholar
  34. 34.
    Payakachat, N., Summers, K. H., Pleil, A. M., Murawski, M. M., Thomas Iii, J., Jennings, K., et al. (2009). Predicting EQ-5D utility scores from the 25-item National Eye Institute Vision Function Questionnaire (NEI-VFQ 25) in patients with age-related macular degeneration. Quality of Life Research, 18(7), 801–813.PubMedCrossRefGoogle Scholar
  35. 35.
    Dobrez, D., Cella, D., Pickard, A. S., Lai, J. S., & Nickolov, A. (2007). Estimation of patient preference-based utility weights from the Functional Assessment of Cancer Therapy—General. Value in Health, 10(4), 266–272.PubMedCrossRefGoogle Scholar
  36. 36.
    Cheung, Y. B., Thumboo, J., Gao, F., Ng, G. Y., Pang, G., Koo, W. H., et al. (2009). Mapping the English and Chinese versions of the Functional Assessment of Cancer Therapy—General to the EQ-5D utility index. Value in Health, 12(2), 371–376.PubMedCrossRefGoogle Scholar
  37. 37.
    Chancellor, J. V., Coyle, D., & Drummond, M. F. (1997). Constructing health state preference values from descriptive quality of life outcomes: Mission impossible? Quality of Life Research, 6(2), 159–168.PubMedCrossRefGoogle Scholar
  38. 38.
    Crott, R., & Briggs, A. (2010). Mapping the QLQ-C30 quality of life cancer questionnaire to EQ-5D patient preferences. The European Journal of Health Economics, 11(4), 427–434.PubMedCrossRefGoogle Scholar
  39. 39.
    Jang, R. W., Isogai, P. K., Mittmann, N., Bradbury, P. A., Shepherd, F. A., Feld, R., et al. (2010). Derivation of utility values from European Organization for Research and Treatment of Cancer Quality of Life-Core 30 questionnaire values in lung cancer. Journal of Thoracic Oncology, 5(12), 1953–1957.PubMedCrossRefGoogle Scholar
  40. 40.
    Longworth, L., Buxton, M. J., Sculpher, M., & Smith, D. H. (2005). Estimating utility data from clinical indicators for patients with stable angina. The European Journal of Health Economics, 6(4), 347–353.PubMedCrossRefGoogle Scholar
  41. 41.
    Wijeysundera, H. C., Tomlinson, G., Norris, C. M., Ghali, W. A., Ko, D. T., & Krahn, M. D. (2011). Predicting EQ-5D utility scores from the Seattle Angina Questionnaire in coronary artery disease: A mapping algorithm using a Bayesian framework. Medical Decision Making, 31(3), 481–493.PubMedCrossRefGoogle Scholar
  42. 42.
    Gutteling, J. J., de Man, R. A., van der Plas, S. M., Schalm, S. W., Busschbach, J. J., & Darlington, A. S. (2006). Determinants of quality of life in chronic liver patients. Alimentary Pharmacology and Therapeutics, 23(11), 1629–1635.PubMedCrossRefGoogle Scholar
  43. 43.
    Skolasky, R. L., Carreon, L. Y., Anderson, P. A., Albert, T. J., & Riley, L. H., 3rd (2011). Predicting health utility scores from the Cervical Spine Outcomes Questionnaire in a multicenter nationwide study of anterior cervical spine surgery. Spine (Phila Pa 1976), 36(25), 2211–2216.Google Scholar
  44. 44.
    Brennan, D. S., & Spencer, A. J. (2006). Mapping oral health related quality of life to generic health state values. BMC Health Services Research, 6, 96.PubMedCrossRefGoogle Scholar
  45. 45.
    Koltowska-Haggstrom, M., Jonsson, B., Isacson, D., & Bingefors, K. (2007). Using EQ-5D to derive general population-based utilities for the Quality of Life Assessment of Growth Hormone Deficiency in Adults (QoL-AGHDA). Value in Health, 10(1), 73–81.PubMedCrossRefGoogle Scholar
  46. 46.
    Buxton, M. J., Lacey, L. A., Feagan, B. G., Niecko, T., Miller, D. W., & Townsend, R. J. (2007). Mapping from disease-specific measures to utility: An analysis of the relationships between the Inflammatory Bowel Disease Questionnaire and Crohn’s Disease Activity Index in Crohn’s disease and measures of utility. Value in Health, 10(3), 214–220.PubMedCrossRefGoogle Scholar
  47. 47.
    Serrano-Aguilar, P., Ramallo-Farina, Y., Trujillo-Martin Mdel, M., Munoz-Navarro, S. R., Perestelo-Perez, L., & de las Cuevas-Castresana, C. (2009). The relationship among mental health status (GHQ-12), health related quality of life (EQ-5D) and health-state utilities in a general population. Epidemiologia e Psichiatria Sociale, 18(3), 229–239.PubMedGoogle Scholar
  48. 48.
    Sharma, S., Brown, G. C., Brown, M. M., Shah, G. K., Snow, K., Brown, H., et al. (2000). Converting visual acuity to utilities. Canadian Journal of Ophthalmology, 35(5), 267–272.PubMedGoogle Scholar
  49. 49.
    Grootendorst, P., Marshall, D., Pericak, D., Bellamy, N., Feeny, D., & Torrance, G. W. (2007). A model to estimate health utilities index mark 3 utility scores from WOMAC index scores in patients with osteoarthritis of the knee. Journal of Rheumatology, 34(3), 534–542.PubMedGoogle Scholar
  50. 50.
    Barton, G. R., Sach, T. H., Jenkinson, C., Avery, A. J., Doherty, M., & Muir, K. R. (2008). Do estimates of cost-utility based on the EQ-5D differ from those based on the mapping of utility scores? Health and Quality of Life Outcomes, 6, 51.PubMedCrossRefGoogle Scholar
  51. 51.
    Xie, F., Pullenayegum, E. M., Li, S. C., Hopkins, R., Thumboo, J., & Lo, N. N. (2010). Use of a disease-specific instrument in economic evaluations: Mapping WOMAC onto the EQ-5D utility index. Value in Health, 13(8), 873–878.PubMedCrossRefGoogle Scholar
  52. 52.
    Dakin, H., Petrou, S., Haggard, M., Benge, S., & Williamson, I. (2009). Mapping analyses to estimate health utilities based on responses to the OM8-30 otitis media questionnaire. Quality of Life Research, 19(1), 65–80.PubMedCrossRefGoogle Scholar
  53. 53.
    Carreon, L. Y., Glassman, S. D., McDonough, C. M., Rampersaud, R., Berven, S., & Shainline, M. (2009). Predicting SF-6D utility scores from the oswestry disability index and numeric rating scales for back and leg pain. Spine (Phila Pa 1976), 34(19), 2085–2089.Google Scholar
  54. 54.
    Cheung, Y. B., Tan, L. C., Lau, P. N., Au, W. L., & Luo, N. (2008). Mapping the eight-item Parkinson’s Disease Questionnaire (PDQ-8) to the EQ-5D utility index. Quality of Life Research, 17(9), 1173–1181.PubMedCrossRefGoogle Scholar
  55. 55.
    Bansback, N., Marra, C., Tsuchiya, A., Anis, A., Guh, D., Hammond, T., et al. (2007). Using the health assessment questionnaire to estimate preference-based single indices in patients with rheumatoid arthritis. Arthritis and Rheumatism, 57(6), 963–971.PubMedCrossRefGoogle Scholar
  56. 56.
    Wolfe, F., Michaud, K., & Wallenstein, G. (2010). Scale characteristics and mapping accuracy of the US EQ-5D, UK EQ-5D, and SF-6D in patients with rheumatoid arthritis. Journal of Rheumatology, 37(8), 1615–1625.PubMedCrossRefGoogle Scholar
  57. 57.
    Carreno, A., Fernandez, I., Badia, X., Varela, C., & Roset, M. (2011). Using HAQ-DI to estimate HUI-3 and EQ-5D utility values for patients with rheumatoid arthritis in Spain. Value in Health, 14(1), 192–200.PubMedCrossRefGoogle Scholar
  58. 58.
    Lenert, L. A., Sturley, A. P., Rapaport, M. H., Chavez, S., Mohr, P. E., & Rupnow, M. (2004). Public preferences for health states with schizophrenia and a mapping function to estimate utilities from positive and negative symptom scale scores. Schizophrenia Research, 71(1), 155–165.PubMedCrossRefGoogle Scholar
  59. 59.
    Yang, M., Dubois, D., Kosinski, M., Sun, X., & Gajria, K. (2007). Mapping MOS Sleep Scale scores to SF-6D utility index. Current Medical Research and Opinion, 23(9), 2269–2282.PubMedCrossRefGoogle Scholar
  60. 60.
    Mortimer, D., Segal, L., & Sturm, J. (2009). Can we derive an ‘exchange rate’ between descriptive and preference-based outcome measures for stroke? Results from the transfer to utility (TTU) technique. Health and Quality of Life Outcomes, 7, 33.PubMedCrossRefGoogle Scholar
  61. 61.
    Rivero-Arias, O., Ouellet, M., Gray, A., Wolstenholme, J., Rothwell, P. M., & Luengo-Fernandez, R. (2010). Mapping the modified Rankin scale (mRS) measurement into the generic EuroQol (EQ-5D) health outcome. Medical Decision Making, 30(3), 341–354.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Fang-Ju Lin
    • 1
  • Louise Longworth
    • 2
  • A. Simon Pickard
    • 1
  1. 1.Center for Pharmacoeconomic Research and Department of Pharmacy Practice and Pharmacy AdministrationUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Health Economics Research GroupBrunel UniversityLondonUK

Personalised recommendations