Quality of Life Research

, Volume 19, Issue 5, pp 643–651 | Cite as

The SF-36 component summary scales and the daytime diurnal cortisol profile

  • Gareth Edward Hagger-Johnson
  • Martha C. Whiteman
  • Andrew J. Wawrzyniak
  • Warren G. Holroyd



Higher daytime cortisol output has been associated with higher levels of perceived stress and worse mental and physical health outcomes. Hypothalamic–pituitary–adrenal (HPA) axis dysregulation, such as elevated secretion of daytime cortisol, occurs in many mental and physical illnesses. However, the nature of the association between functional health status and daytime cortisol production has not been established.


Healthy adult volunteers (n = 68, 45 females) provided saliva samples 3, 6, 9 and 12 h after waking, for two consecutive days, in everyday settings. Bivariate correlations between log salivary cortisol concentrations were calculated, and the SF-36 component summary scores were calculated. Latent growth curve modeling was used to model the daytime profile and adjust for covariates (age, sex and waking time).


Higher PCS scores were not associated with cortisol three hours after waking (cortisol intercept), or the diurnal decline (cortisol slope). Higher MCS scores were correlated with faster cortisol decline across the day (r = −.31, P < .01) but not with cortisol intercepts. In a latent growth curve model adjusting for age, sex and waking time, the association was no longer statistically significant.


Large scale epidemiological studies involving salivary cortisol would benefit from measuring SF-36 component summary scores. Cortisol intercepts and slopes may be differentially related to the PCS and MCS, although greater statistical power is needed to test this hypothesis more fully. Associations between daytime cortisol and the PCS or MCS could reflect the regulatory competence of bodily systems, common causes or unmeasured confounding factors.


Biomarkers Cortisol Health status Stress Surrogate marker Quality of life 



Economic and Social Research Council. The University of Edinburgh Campaign ( We are grateful to Paul Dudgeon, Jeremy Miles and Yu-Kang Tu for their comments on earlier versions of this manuscript


  1. 1.
    van Praag, H. M., de Kloet, E. R., & van Os, J. (2004). Stress the brain and depression. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  2. 2.
    Edwards, S., Evans, P., Hucklebridge, F., & Clow, A. (2001). Association between time of awakening and diurnal cortisol secretory activity. Psychoneuroendocrinology, 26(6), 613–622.CrossRefPubMedGoogle Scholar
  3. 3.
    Edwards, S., Clow, A., Evans, P., & Hucklebridge, F. (2001). Exploration of the awakening cortisol response in relation to diurnal cortisol secretory activity. Life Sciences, 68(18), 2093–2103.CrossRefPubMedGoogle Scholar
  4. 4.
    Bower, J., Ganz, P., Dickerson, S., Petersen, L., Aziz, N., & Fahey, J. (2005). Diurnal cortisol rhythm and fatigue in breast cancer survivors. Psychoneuroendocrinology, 30(1), 92–100.CrossRefPubMedGoogle Scholar
  5. 5.
    Lindeberg, S., Eek, F., Lindbladh, E., Östergren, P. O., Hansen, Å. M., & Karlson, B. (2008). Exhaustion measured by the SF-36 vitality scale is associated with a flattened diurnal cortisol profile. Psychoneuroendocrinology, 33(4), 471–477.CrossRefPubMedGoogle Scholar
  6. 6.
    Nicolson, N. A., & Van Diest, R. (2000). Salivary cortisol patterns in vital exhaustion. Journal of Psychosomatic Research, 49(5), 335–342.CrossRefPubMedGoogle Scholar
  7. 7.
    Sjoumlgren, E., Leanderson, P., & Kristenson, M. (2006). Diurnal saliva cortisol levels and relations to psychosocial factors in a population sample of middle-aged Swedish men and women. International Journal of Behavioral Medicine, 13(3), 193–200.CrossRefGoogle Scholar
  8. 8.
    McEwan, B. S. (1998). Stress, adaptation, and disease: Allostasis and allostatic load. Annals of the New York Academy of Sciences, 840(1), 33–44.CrossRefGoogle Scholar
  9. 9.
    McEwen, B. S. (2000). Allostasis and allostatic load: Implications for neuropsychopharmacology. Neuropsychopharmacology, 22(2), 108–124.CrossRefPubMedGoogle Scholar
  10. 10.
    Sephton, S. E., Sapolsky, R. M., Kraemer, H. C., & Spiegel, D. (2000). Diurnal cortisol rhythm as a predictor of breast cancer survival. Journal of the National Cancer Institute, 92(12), 994–1000.CrossRefPubMedGoogle Scholar
  11. 11.
    Sephton, S., & Spiegel, D. (2003). Circadian disruption in cancer: A neuroendocrine-immune pathway from stress to disease? Brain, Behavior and Immunity, 17(5), 321–328.CrossRefGoogle Scholar
  12. 12.
    Spiegel, D., & Sephton, S. E. (2001). Psychoneuroimmune and endocrine pathways in cancer: Effects of stress and support. Seminars in Clinical Neuropsychiatry, 6(4), 252–265.CrossRefPubMedGoogle Scholar
  13. 13.
    Clow, A., Thorn, L., Evans, P., & Hucklebridge, F. (2004). The awakening cortisol response: Methodological issues and significance. Stress, 7(1), 29–37.CrossRefPubMedGoogle Scholar
  14. 14.
    Wust, S., Federenko, I., Hellhammer, D., & Kirschbaum, C. (2000). Genetic factors, perceived chronic stress, and the free cortisol response to awakening. Psychoneuroendocrinology, 25(7), 707–720.CrossRefPubMedGoogle Scholar
  15. 15.
    Kaye, J. M., & Lightman, S. L. (2005). Psychological stress and endocrine axes. In K. Vedhara & M. Irwin (Eds.), Human psychoneuroimmunology (pp. 25–52). Oxford: Oxford University Press.Google Scholar
  16. 16.
    Kudielka, B. M., Hellhammer, D. H., & Wüst, S. (2009). Why do we respond so differently? Reviewing determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology, 34(1), 2–18.CrossRefPubMedGoogle Scholar
  17. 17.
    Epel, E. S. (2009). Psychological and metabolic stress: A recipe for accelerated cellular aging? Hormones, 8(1), 7–22.PubMedGoogle Scholar
  18. 18.
    Ware, J. E., Snow, K. K., Kosisnki, M., & Gandek, B. (1993). SF-36 health survey manual and interpretation guide. Boston, MA: The Health Institute.Google Scholar
  19. 19.
    Ware, J. E., Kosinski, M., & Keller, S. K. (1994). SF-36 ® physical and mental health summary scales: A user’s manual. Boston, MA: The Health Institute.Google Scholar
  20. 20.
    Uhart, M., Chong, R. Y., Oswald, L., Lin, P.-I., & Wand, G. S. (2006). Gender differences in hypothalamic-pituitary-adrenal (HPA) axis reactivity. Psychoneuroendocrinology, 31(5), 642–652.CrossRefPubMedGoogle Scholar
  21. 21.
    Edwards, S., Hucklebridge, F., Clow, A., & Evans, P. (2003). Components of the diurnal cortisol cycle in relation to upper respiratory symptoms and perceived stress. Psychosomatic Medicine, 65(2), 320–327.CrossRefPubMedGoogle Scholar
  22. 22.
    Jenkinson, C., Layte, R., Wright, L., & Coulter, A. (1996). The U.K. SF-36: An analysis and interpretation manual. A guide to health status measurement with particular reference to the short form 36 health survey. Oxford: Health Services Research Unit, University of Oxford.Google Scholar
  23. 23.
    Cohen, S., Kamarck, T., & Mermelstein, R. (1983). A global measure of perceived stress. Journal of Health and Social Behavior, 24(4), 385–396.CrossRefPubMedGoogle Scholar
  24. 24.
    Kirschbaum, C., & Hellhammer, D. (1994). Salivary cortisol in psychoneuroendocrine research: Recent developments and applications. Psychoneuroendocrinology, 19(4), 313–333.CrossRefPubMedGoogle Scholar
  25. 25.
    Jemmott, J. (1987). Social motives and susceptibility to disease: Stalking individual differences in health risks. Journal of Personality, 55(2), 267–298.CrossRefPubMedGoogle Scholar
  26. 26.
    Cohen, S., & Williams, G. S. (1993). Perceived stress in a probability sample of the US. In S. Spacapan & S. Oskamp (Eds.), The social psychology of health. Newbury Park, CA: SAGE.Google Scholar
  27. 27.
    Mikolajczyk, R., Maxwell, A., Naydenova, V., Meier, S., & El Ansari, W. (2008). Depressive symptoms and perceived burdens related to being a student: Survey in three European countries. Clinical Practice and Epidemiology in Mental Health, 4(1), 19.CrossRefPubMedGoogle Scholar
  28. 28.
    Allgower, A., Wardle, J., & Steptoe, A. (2001). Depressive symptoms, social support, and personal health behaviors in young men and women. Health Psychology, 20(3), 223–227.CrossRefPubMedGoogle Scholar
  29. 29.
    Bollen, K., & Curran, P. (2005). Latent curve models: A structural equation perspective. Hoboken, NJ: Wiley-Interscience.Google Scholar
  30. 30.
    Hruschka, D., Kohrt, B., & Worthman, C. (2005). Estimating between- and within-individual variation in cortisol levels using multilevel models. Psychoneuroendocrinology, 30(7), 698–714.CrossRefPubMedGoogle Scholar
  31. 31.
    Rogosa, D., & Saner, H. (1995). Longitudinal data analysis examples with random coefficient models. Journal of Educational and Behavioral Statistics, 20(2), 149–170.Google Scholar
  32. 32.
    Curran, P. J. (2003). Have multilevel models been structural equation models all along? Multivariate Behavioral Research, 38(4), 529–569.CrossRefGoogle Scholar
  33. 33.
    Muthén, L. K., & Muthén, B. O. (1998–2007). Mplus user’s guide, 5th Edn. Los Angeles, CA: Muthén & Muthén.Google Scholar
  34. 34.
    Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424–453.CrossRefGoogle Scholar
  35. 35.
    Kramer, S. H., & Rosenthal, R. (1999). Effect sizes and significance levels in small-sample research. In R. H. Hoyle (Ed.), Statistical strategies for small sample research (pp. 60–79). Thousand Oaks, CA: SAGE.Google Scholar
  36. 36.
    Harris, A., Ursin, H., Murison, R., & Eriksen, H. R. (2007). Coffee, stress and cortisol in nursing staff. Psychoneuroendocrinology, 32(4), 322–330.CrossRefPubMedGoogle Scholar
  37. 37.
    Kumari, M., Badrick, E., Chandola, T., Adam, E. K., Stafford, M., Marmot, M. G., et al. (2009). Cortisol secretion and fatigue: Associations in a community based cohort. Psychoneuroendocrinology, 34(10), 1476–1485.CrossRefPubMedGoogle Scholar
  38. 38.
    Hellhammer, D., Wust, S., & Kudielka, B. (2009). Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology, 34(2), 163–171.CrossRefPubMedGoogle Scholar
  39. 39.
    Vreeburg, S. A., Hoogendijk, W. J. G., van Pelt, J., DeRijk, R. H., Verhagen, J. C. M., van Dyck, R., et al. (2009). Major depressive disorder and hypothalamic-pituitary-adrenal axis activity: Results from a large cohort study. Archives of General Psychiatry, 66(6), 617–626.CrossRefPubMedGoogle Scholar
  40. 40.
    Oswald, L. M., Zandi, P., Nestadt, G., Potash, J. B., Kalaydjian, A. E., & Wand, G. S. (2006). Relationship between cortisol responses to stress and personality. Neuropsychopharmacology, 31(7), 1583–1591.CrossRefPubMedGoogle Scholar
  41. 41.
    Adam, E. K., & Kumari, M. (2009). Assessing salivary cortisol in large-scale, epidemiological research. Psychoneuroendocrinology, 34(10), 1423–1436.CrossRefPubMedGoogle Scholar
  42. 42.
    Maddox, G. L., & Douglass, E. B. (1973). Self-assessment of health: A longitudinal study of elderly subjects. Journal of Health and Social Behavior, 14(1), 87–93.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Gareth Edward Hagger-Johnson
    • 1
  • Martha C. Whiteman
    • 2
  • Andrew J. Wawrzyniak
    • 3
  • Warren G. Holroyd
    • 4
  1. 1.Leeds Institute of Health SciencesUniversity of LeedsLeedsUK
  2. 2.Moray House School of EducationUniversity of EdinburghEdinburghUK
  3. 3.Department of Medical & Clinical PsychologyUniformed Services University of the Health SciencesBethesdaUSA
  4. 4.Public Health – Intelligence and Capacity BuildingWakefieldUK

Personalised recommendations