Quality of Life Research

, Volume 17, Issue 7, pp 1021–1029 | Cite as

An assessment of factorial structure and health-related quality of life in problem drug users using the Short Form 36 Health Survey

  • Angela Buchholz
  • Anneke Krol
  • Fred Rist
  • Pythia T. Nieuwkerk
  • Gerard M. Schippers



To confirm the factorial structure of the Short Form 36 Health Survey (SF-36) in problem drug users and to compare their health-related quality of life (HRQOL) with general Dutch population norms.


Data of 394 participants from the Amsterdam Cohort Study among drug users, who had completed once the SF-36 standard form (4 weeks recall) between February and August 2005, were analyzed. The factorial structure of the SF-36 was investigated by confirmatory factor analysis. Subsequently, sum scores of the eight SF-36 health dimensions were converted into z-scores by standardizing them with the mean and standard deviation of the corresponding general Dutch population age and gender group.


The factor structure was acceptable and also comparable with previous findings. Compared with the general population, participants had significantly lower z-scores on all of the eight SF-36 dimensions, with largest deviations in social functioning (M = −1.13) and mental health (M = −1.01), and smallest deviations in bodily pain (M = −0.32).


The results corroborate the factorial structure and reliability of the answers of problem drug users to the SF−36. Their HRQOL was low, even though it was assessed irrespective of substance abuse treatment settings.


Health-related quality of life SF-36 Factorial structure Problem drug users Amsterdam Cohort Studies 

List of Abbreviations (in alphabetical order)


Amsterdam Cohort Studies among drug users


Acquired immunodeficiency syndrome


Bodily pain


Confirmatory factor analysis


Comparative fit index


General health


Human immunodeficiency virus


Health-related quality of life


Interquartile range




Mental health


Problem drug users


Physical functioning


Quality of life


Role limits emotional


Root-mean-square error of approximation


Role limits physical


Standard deviation


Social functioning


Short Form 36 Health Survey


Sexually transmitted diseases


Tucker Lewis index




Weighted least-square mean and variance adjusted



The Amsterdam Cohort Studies on HIV infection and AIDS, a collaboration between the Amsterdam Health Service, the Academic Medical Center of the University of Amsterdam, the Sanquin Blood Supply Foundation, and the University Medical Center Utrecht, are part of the Netherlands HIV Monitoring Foundation and financially supported by the Netherlands National Institute for Public Health and the Environment. The authors wish to thank Joke Bax, Ans Snuverink, and Hella Brandt for their help with the collection and entry of the data. We also thank Maria Prins and Angelika Glöckner-Rist for helpful comments on previous drafts of the manuscript and Lucy Phillips for editorial assistance.

Reference List

  1. 1.
    European Monitoring Centre for Drugs and Drug Addiction (2007). Annual Report 2007 Lisbon: European Monitoring Centre for Drugs and Drug Addiction.Google Scholar
  2. 2.
    McLellan, A. T., Lewis, D. C., O’Brien, C. P., & Kleber, H. D. (2000). Drug dependence, a chronic medical illness Implications for treatment, insurance and outcomes evaluation. JAMA, 284, 1689–1695.PubMedCrossRefGoogle Scholar
  3. 3.
    Connor, J. P., Saunders, J. B., & Feeney, G. F. X. (2006). Quality of life in substance use disorders. In H. Katschnig, H. Freeman & N. Sartorius (Eds.), Quality of life in mental disorders (2nd ed., pp. 199–208). Chichester: Wiley.Google Scholar
  4. 4.
    Deering, D., Frampton, C., Horn, J., Sellman, D., Adamson, S., & Potiki, T. (2004). Health status of clients receiving methadone maintenance treatment using the SF-36 health survey questionnaire. Drug and Alcohol Review, 23, 273–280.PubMedCrossRefGoogle Scholar
  5. 5.
    Smith, K. W., & Larson, M. J. (2003). Quality of life assessments by adult substance abusers receiving publicly funded treatment in Massachusetts. American Journal of Drug and Alcohol Abuse, 29, 323–335.PubMedCrossRefGoogle Scholar
  6. 6.
    Stein, M. D., Mulvey, K. P., Plough, A., & Samet, J. H. (1998). The functioning and well being of persons who seek treatment for drug and alcohol use. Journal of Substance Abuse, 10, 75–84.PubMedCrossRefGoogle Scholar
  7. 7.
    Millson, P. E., Challacombe, L., Villeneuve, P. J., Fischer, B., Strike, C. J., Myers, T., et al. (2004). Self-perceived health among Canadian opiate users: A comparison to the general population and to other chronic disease populations. Canadian Journal of Public Health, 95, 99–103.Google Scholar
  8. 8.
    Ryan, C. F., & White, J. M. (1996). Health status at entry to methadone maintenance treatment using the SF-36 health survey questionnaire. Addiction, 91, 39–45.PubMedCrossRefGoogle Scholar
  9. 9.
    Richter, D., Eikelmann, B., & Berger, K. (2004). Use of the SF-36 in the evaluation of a drug detoxification program. Quality of Life Research, 13, 907–914.PubMedCrossRefGoogle Scholar
  10. 10.
    Neale, J. (2004). Measuring the health of Scottish drug users. Health & Social Care in the Community, 12, 202–211.CrossRefGoogle Scholar
  11. 11.
    Garratt, A., Schmidt, L., Mackintosh, A., & Fitzpatrick, R. (2002). Quality of life measurement: Bibliographic study of patient assessed health outcome measures. BMJ, 324, 1417.PubMedCrossRefGoogle Scholar
  12. 12.
    Ware, J. E., Jr. (2004). SF-36 health survey update. In M.E. Maruish (Ed.), The use of psychosocial testing for treatment planning and outcome assessment (3 ed., pp. 695–720). Lawrence Erlbaum Associates).Google Scholar
  13. 13.
    Coons, S. J., Rao, S., Keininger, D. L., & Hays, R. D. (2000). A comparative review of generic quality-of-life instruments. Pharmacoeconomics, 17, 13–35.PubMedCrossRefGoogle Scholar
  14. 14.
    Ware, J. E., Jr., Kosinski, M., Gandek, B., Aaronson, N. K., Apolone, G., Bech, P., et al. (1998). The factor structure of the SF-36 Health Survey in 10 countries: Results from the IQOLA Project. International Quality of Life Assessment. Journal of Clinical Epidemiology, 51, 1159–1165.PubMedCrossRefGoogle Scholar
  15. 15.
    Ware, J. E., Snow, K. K., Kosinski, M., & Gandek, B. (1993). SF-36 Health Survey. Manual & Interpretation Guide. Boston, Massachusetts: The Health Institute, New England Medical Center.Google Scholar
  16. 16.
    Ware, J. E., & Kosinski, M. (2001). Interpreting SF-36 summary health measures: A response. Quality of Life Research, 10, 405–413.PubMedCrossRefGoogle Scholar
  17. 17.
    Taft, C., Karlsson, J., & Sullivan, M. (2001). Do SF-36 summary component scores accurately summarize subscale scores? Quality of Life Research, 10, 395–404.PubMedCrossRefGoogle Scholar
  18. 18.
    Taft, C., Karlsson, J., & Sullivan, M. (2001). Editorial comment: Reply to Drs Ware and Kosinski. Quality of Life Research, 10, 415–420.CrossRefGoogle Scholar
  19. 19.
    Simon, G. E., Revicki, D. A., Grothaus, L., & VonKorff, M. (1998). SF-36 summary scores: Are physical and mental health truly distinct? Medical Care, 36, 567–572.PubMedCrossRefGoogle Scholar
  20. 20.
    Keller, S. D., Ware, J. E., Jr., Bentler, P. M., Aaronson, N. K., Alonso, J., Apolone, G., et al. (1998). Use of structural equation modeling to test the construct validity of the SF-36 Health Survey in ten countries: Results from the IQOLA Project. International Quality of Life Assessment. Journal of Clinical Epidemiology, 51, 1179–1188.PubMedCrossRefGoogle Scholar
  21. 21.
    Haynes, S. N., Nelson, K., & Blaine, D. D. (1999). Psychometric issues in assessment research. In P. C. Kendall, J. N. Butcher & G. N. Holmbeck (Eds.), Handbook of research methods in clinical psychology (2nd ed., pp. 125–154). New York: John.Google Scholar
  22. 22.
    Messick, S. (1995). Validity of psychological assessment: Validation of inferences from persons’ responses and performances as scientific inquiry into score meaning. American Psychologist, 50, 741–749.CrossRefGoogle Scholar
  23. 23.
    Reno, R. R., & Aiken, L. S. (1993). Life activities and life quality of heroin addicts in and out of methadone treatment. International Journal of the Addictions, 28, 211–232.PubMedGoogle Scholar
  24. 24.
    Aiken, L. S. (1986). Retrospective self-reports by clients differ from original reports: Implications for the evaluation of drug treatment programs. International Journal of the Addictions, 21, 767–788.PubMedGoogle Scholar
  25. 25.
    van den Hoek, J. A., Coutinho, R. A., van Haastrecht, H. J., van Zadelhoff, A. W., & Goudsmit, J. (1988). Prevalence and risk factors of HIV infections among drug users and drug-using prostitutes in Amsterdam. AIDS, 2, 55–60.PubMedCrossRefGoogle Scholar
  26. 26.
    Aaronson, N. K., Muller, M., Cohen, P. D., Essink-Bot, M. L., Fekkes, M., Sanderman, R., et al. (1998). Translation, validation, and norming of the Dutch language version of the SF-36 Health Survey in community and chronic disease populations. Journal of Clinical Epidemiology, 51, 1055–1068.PubMedCrossRefGoogle Scholar
  27. 27.
    Langendam, M. W., van Haastrecht, H. J., & van Ameijden, E. J. (1999). The validity of drug users’ self-reports in a non-treatment setting: Prevalence and predictors of incorrect reporting methadone treatment modalities. International journal of Epidemiology, 28, 514–520.PubMedCrossRefGoogle Scholar
  28. 28.
    Sijtsma, K., & van der Ark, L. A. (2003). Investigation and treatment of missing item scores in test and questionnaire data. Multivariate Behavioral Research, 38, 505–528.CrossRefGoogle Scholar
  29. 29.
    van Ginkel, J. R., & van der Ark, L. A. (2005). SPSS syntax for missing value imputation in test and questionnaire data. Applied Psychological Measurement, 29, 152–153.CrossRefGoogle Scholar
  30. 30.
    Muthèn, L. K., & Muthèn, B. O. (2006). Mplus 4.1. Los Angeles: Muthèn & Muthèn.Google Scholar
  31. 31.
    Glöckner-Rist, A., & Hoijtink, H. (2003). The best of both worlds: Factor analysis of dichotomous data using item response theory and structural equation modeling. Structural Equation Modeling, 10, 544–565.CrossRefGoogle Scholar
  32. 32.
    Flora, D. B., & Curran, P. J. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9, 466–491.PubMedCrossRefGoogle Scholar
  33. 33.
    Finney, S. J., & DiStefano, C. (2006). Nonnormal and categorical data in structural equation modeling. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling. A second course (pp. 269–314). Greenwich, Conneticut: Information Age.Google Scholar
  34. 34.
    Marsh, H. W., Hau, K.-T., & Grayson, D. (2005). Goodness of fit in structural equation models. In A. Maydeu-Olivares & J. J. McArdle (Eds.), Contemporary psychometrics (pp. 275–340). Mahwah, NJ: Lawrence ErlbaumGoogle Scholar
  35. 35.
    Brown, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136–162). Newbury Park, CA: Sage.Google Scholar
  36. 36.
    Wirtz, M. (2004). Über das Problem fehlender Werte: Wie der Einfluss fehlender Informationen auf Analyseergebnisse entdeckt und reduziert werden kann. [On the problem of missing data: How to identify and reduce the impact of missing data on findings of data analysis]. Rehabilitation, 43, 109–115.PubMedCrossRefGoogle Scholar
  37. 37.
    Cohen, J. (1988). Statistical power analysis for the social sciences. Hillsdale, New Jersey: Lawrence Erlbaum.Google Scholar
  38. 38.
    Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.Google Scholar
  39. 39.
    Reed, P. J. (1998). Medical outcomes study short form 36: Testing and cross-validating a second-order factorial structure for health system employees. Health Services Research, 33, 1361–1380.PubMedGoogle Scholar
  40. 40.
    Maurischat, C., Bestmann, A., Hasenbein, U., & Bullinger, M. (2004). Strukturelle Validität des Short Form 36 Health Survey (SF-36) bei neurologischen Patienten [Structural validity of the Short Form 36 (SF-36) in patients with neurological diseases]. Neurologie & Rehabilitation, 10, 13–20.Google Scholar
  41. 41.
    Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3, 4–70.CrossRefGoogle Scholar
  42. 42.
    Cheung, G. W., & Rensvold, R. B. (1999). Testing factorial invariance across groups: A reconceptualization and proposed new method. Journal of Management, 25, 1–27.CrossRefGoogle Scholar
  43. 43.
    Morgan, T. J., Morgenstern, J., Blanchard, K. A., Labouvie, E., & Bux, D. A. (2003). Health related quality of life for adults participating in outpatient substance abuse treatment. The American Journal on Addictions, 12, 198–210.PubMedCrossRefGoogle Scholar
  44. 44.
    Cortina, J. M. (1993). What is coefficent alpha? An examination of theory and applications. Journal of Applied Psychology, 78, 98–104.CrossRefGoogle Scholar
  45. 45.
    Torrens, M., San, L., Martinez, A., Castillo, C., Domingo-Salvany, A., & Alonso, J. (1997). Use of the Nottingham Health Profile for measuring health status of patients in methadone maintenance treatment. Addiction, 92, 707–716.PubMedCrossRefGoogle Scholar
  46. 46.
    Rose, M. S., Koshman, M. L., Spreng, S., & Sheldon, R. (1999). Statistical issues encountered in the comparison of health-related quality of life in diseased patients to published general population norms: Problems and solutions. Journal of Clinical Epidemiology, 52, 405–412.PubMedCrossRefGoogle Scholar
  47. 47.
    Compton, M. A. (1994). Cold-pressor pain tolerance in opiate and cocaine abusers: Correlates of drug type and use status. Journal of Pain and Symptom Management, 9, 462–473.PubMedCrossRefGoogle Scholar
  48. 48.
    Doverty, M., White, J. M., Somogyi, A. A., Bochner, F., Ali, R., & Ling, W. (2001). Hyperalgesic responses in methadone maintenance patients. Pain, 90, 91–96.PubMedCrossRefGoogle Scholar
  49. 49.
    Compton, P., Charuvastra, V. C., Kintaudi, K., & Ling, W. (2000). Pain responses in methadone-maintained opioid abusers. Journal of Pain and Symptom Management, 20, 237–245.PubMedCrossRefGoogle Scholar
  50. 50.
    Ho, A., & Dole, V. P. (1979). Pain perception in drug-free and in methadone-maintained human ex-addicts. Proceedings of the Society for Experimental Biology and Medicine, 162, 392–395.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Angela Buchholz
    • 1
  • Anneke Krol
    • 2
  • Fred Rist
    • 1
  • Pythia T. Nieuwkerk
    • 3
  • Gerard M. Schippers
    • 4
  1. 1.Department of Clinical PsychologyUniversity of MuensterMuensterGermany
  2. 2.Department of Research, Cluster, Infectious DiseasesHealth Service of AmsterdamAmsterdamThe Netherlands
  3. 3.Department of Medical PsychologyAcademic Medical Center/University of AmsterdamAmsterdamThe Netherlands
  4. 4.The Amsterdam Institute for Addiction ResearchAcademic Medical Center/University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations