Quality of Life Research

, Volume 16, Issue 10, pp 1655–1663 | Cite as

Cluster analysis: a useful technique to identify elderly cardiac patients at risk for poor quality of life

  • Yoshimi Fukuoka
  • Teri G. Lindgren
  • Sally H. Rankin
  • Bruce A. Cooper
  • Diane L. Carroll



The purposes of this study are (1) to examine the frequency of cardiac symptoms in elderly people one year after acute myocardial infarction (AMI) and/or coronary artery bypass surgery (CABG); (2) to identify patient subgroups (cluster solutions) based on cardiac symptoms after cardiac events and (3) to determine if these subgroups vary based on health related quality of life and psychological distress.


A sample of 206 elderly, unpartnered, patients (age ≥ 65) were interviewed one year after AMI and/or CABG by telephone. Cardiac symptoms, SF-36, POMS, and QOL-I were measured. A hierarchical cluster analysis was used to identify patient subgroups based on cardiac symptoms, using a combination of dendrograms and stopping rules.


Three subgroups were identified: (1) the Weary (19.4%), (2) the Diffuse symptom (68.4%), and (3) the Breathless groups (12.2%). The Weary group had significantly lower scores on all of SF-36 subscales (except for social functioning) and higher scores on all of POMS subscales (except for Anger/hostility and Confusion/Bewilderment) compared to the Diffuse symptom group.


The cluster analysis was useful to identify the subgroup with poorer recovery. Patients in the Weary group need more attention and intervention strategies to improve their health.


Cluster analysis Health related quality of life Acute myocardial infarction Coronary artery bypass graft Psychological distress Aging Depression Cardiac symptom Fatigue Recovery Elderly Women 



We would like to acknowledge support from the NINR R01 NR005205 for Drs. Rankin and Carroll, NIH T32 NR07088 symptom management postdoctoral fellowships for Drs. Lindgren and Fukuoka and support from NICHD 9K12 HD052163-06 and UCSF’s Office of Research on Women’s Health for Dr. Fukuoka.


  1. 1.
    He, W., Sengupta, M., Velkoff, A. V., et al. (2005). U.S. Census Bureau: Current population report, 65+ in the United States: 2005 (Vol. 30). Washington, DC: U.S.: Government Printing Office.Google Scholar
  2. 2.
    American Heart Association (2007). 2007 Statistical Fact Sheet – Populations: Older Americans and cardiovascular diseases – Statistics. American Heart Association.Google Scholar
  3. 3.
    Westin, L., Nilstun, T., Carlsson, R., et al. (2005). Patients with ischemic heart disease: Quality of life predicts long-term mortality. Scandinavian Cardiovascular Journal, 39(1–2), 50–54.PubMedCrossRefGoogle Scholar
  4. 4.
    Rumsfeld, J. S., MaWhinney, S., McCarthy, M., Jr., et al. (1999). Health-related quality of life as a predictor of mortality following coronary artery bypass graft surgery. Participants of the Department of Veterans Affairs Cooperative Study Group on Processes, Structures, and Outcomes of Care in Cardiac Surgery. JAMA, 281(14), 1298–1303.PubMedCrossRefGoogle Scholar
  5. 5.
    Grace, S. L., Abbey, S. E., Irvine, J., et al. (2004). Prospective examination of anxiety persistence and its relationship to cardiac symptoms and recurrent cardiac events. Psychotherapy and Psychosomatics, 73(6), 344–352.PubMedCrossRefGoogle Scholar
  6. 6.
    Dodd, M. J., Miaskowski, C., & Paul, S. M. (2001). Symptom clusters and their effect on the functional status of patients with cancer. Oncology Nursing Forum, 28(3), 465–470.PubMedGoogle Scholar
  7. 7.
    Gift, A. G., Jablonski, A., Stommel, M., et al. (2004). Symptom clusters in elderly patients with lung cancer. Oncology Nursing Forum, 31(2), 202–212.PubMedCrossRefGoogle Scholar
  8. 8.
    Kim, H. J., McGuire, D. B., Tulman, L., et al. (2005). Symptom clusters: Concept analysis and clinical implications for cancer nursing. Cancer Nursing, 28(4), 270–282 (quiz 283–274).PubMedCrossRefGoogle Scholar
  9. 9.
    Gorsuch, R. L. (1983). Factor analysis. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  10. 10.
    Thompson, B. (2004). Exploratory and confirmatory factor analysis: Understanding concepts and applications. Washington, D.C.: American Psychological Association.Google Scholar
  11. 11.
    Carroll, D. L., Rankin, S. H., & Cooper, B. A. (2007). The effects of a collaborative peer advisor/advanced practice nurse intervention: Cardiac rehabilitation participation and rehospitalization in older adults after a cardiac event. Journal of Cardiovascular Nursing, 22(4), 313–319.PubMedGoogle Scholar
  12. 12.
    Stewart, A. L., Hays, R. D., & Ware, J. E., Jr. (1988). The MOS short-form general health survey. Reliability and validity in a patient population. Medical Care, 26(7), 724–735.PubMedCrossRefGoogle Scholar
  13. 13.
    Ferrans, C. E., & Ferrell, B. R. (1992). [Quality of life studies in nursing science (1). Development of a quality of life index for patients]. Kango Kenkyu, 25(2), 117–124.PubMedGoogle Scholar
  14. 14.
    McNair, D. M., Lorr, M., & Droppleman, L. F. (1992). POMS manual: Profile of mood states. San Diego, CA: Edits.Google Scholar
  15. 15.
    Sherbourne, C. D., & Stewart, A. L. (1991). The MOS social support survey. Social Science and Medicine, 32(6), 705–714.PubMedCrossRefGoogle Scholar
  16. 16.
    Lindgren, G. T., Fukuoka, Y., Rankin, H. S., et al. (In press). Cluster analysis of elderly cardiac patients’ prehospital symptomatology. Nursing Research. Google Scholar
  17. 17.
    Charlson, M. E., Pompei, P., Ales, K. L., et al. (1987). A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. Journal of Chronic Diseases, 40(5), 373–383.PubMedCrossRefGoogle Scholar
  18. 18.
    Everitt, B. S., Landau, S., & Leese, M. (2001). Cluster analysis. New York: Oxford Univ. Press.Google Scholar
  19. 19.
    MacCallum, R. C., Zhang, S., Preacher, K. J., et al. (2002). On the practice of dichotomization of quantitative variables. Psychological Methods, 7(1), 19–40.PubMedCrossRefGoogle Scholar
  20. 20.
    Royston, P., Altman, D. G., & Sauerbrei, W. (2006). Dichotomizing continuous predictors in multiple regression: A bad idea. Statistics in Medicine, 25(1), 127–141.PubMedCrossRefGoogle Scholar
  21. 21.
    Milligan, G., & Cooper, M. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50(2), 159–179.CrossRefGoogle Scholar
  22. 22.
    Miaskowski, C., Cooper, B. A., Paul, S. M., et al. (2006). Subgroups of patients with cancer with different symptom experiences and quality-of-life outcomes: a cluster analysis. Oncology Nursing Forum, 33(5), E79–89.PubMedCrossRefGoogle Scholar
  23. 23.
    Fox, S. W., & Lyon, D. E. (2006). Symptom clusters and quality of life in survivors of lung cancer. Oncology Nursing Forum, 33(5), 931–936.PubMedCrossRefGoogle Scholar
  24. 24.
    Agewall, S., Berglund, M., & Henareh, L. (2004). Reduced quality of life after myocardial infarction in women compared with men. Clinical Cardiology, 27(5), 271–274.PubMedCrossRefGoogle Scholar
  25. 25.
    Lukkarinen, H., & Hentinen, M. (1998). Assessment of quality of life with the Nottingham Health Profile among women with coronary artery disease. Heart & Lung, 27(3), 189–199.CrossRefGoogle Scholar
  26. 26.
    Herlitz, J., Wiklund, I., Sjoland, H., et al. (2001). Relief of symptoms and improvement of health-related quality of life five years after coronary artery bypass graft in women and men. Clinical Cardiology, 24(5), 385–392.PubMedCrossRefGoogle Scholar
  27. 27.
    Aben, I., Verhey, F., Strik, J., et al. (2003). A comparative study into the one year cumulative incidence of depression after stroke and myocardial infarction. Journal of Neurology and Neurosurgery Psychiatry, 74(5), 581–585.CrossRefGoogle Scholar
  28. 28.
    Thombs, B. D., Bass, E. B., Ford, D. E., et al. (2006). Prevalence of depression in survivors of acute myocardial infarction. Journal of General Internal Medicine, 21(1), 30–38.PubMedCrossRefGoogle Scholar
  29. 29.
    Lenzen, M., Scholte op Reimer, W., Norekval, T. M., et al. (2006). Pharmacological treatment and perceived health status during 1-year follow up in patients diagnosed with coronary artery disease, but ineligible for revascularization. Results from the Euro Heart Survey on Coronary Revascularization. European Journal of Cardiovascular Nursing, 5(2), 115–121.PubMedCrossRefGoogle Scholar
  30. 30.
    Lesman-Leegte, I., Jaarsma, T., Sanderman, R., et al. (2006). Depressive symptoms are prominent among elderly hospitalised heart failure patients. European Journal of Heart Failure, 8(6), 634–640.PubMedCrossRefGoogle Scholar
  31. 31.
    Freedland, K. E., Rich, M. W., Skala, J. A., et al. (2003). Prevalence of depression in hospitalized patients with congestive heart failure. Psychosomatic Medicine, 65(1), 119–128.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Yoshimi Fukuoka
    • 1
  • Teri G. Lindgren
    • 1
  • Sally H. Rankin
    • 1
  • Bruce A. Cooper
    • 1
  • Diane L. Carroll
    • 2
  1. 1.School of Nursing, University of California San FranciscoSan FranciscoUSA
  2. 2.Yvonne L. Munn Center for Nursing Research Institute for Patient CareMassachusetts General HospitalBostonUSA

Personalised recommendations