Quality of Life Research

, Volume 14, Issue 7, pp 1743–1753 | Cite as

The impact of the VF-14 index, a perceived visual function measure, in the routine management of cataract patients

  • J. M. Valderas
  • M. Rue
  • G. Guyatt
  • J. Alonso


Background: Evidence about the impact of routine feedback of patient-reported outcomes is contradictory, and there is limited information regarding its use in the routine management of cataract patients. Methods: The VF-14 Index was used to assess the visual function of 833 consecutive cataract patients, attending 19 ophthalmologists from public and private hospitals and primary care practices in Spain, in 1999–2000. In this before/after trial, the intervention included (1) an educational session, and (2) the provision of the VF-14 scores of all subsequent patients to the ophthalmologist. Mixed effects linear and logistic models were constructed to assess the effect on the process (correlation between patients’ and physicians’ assessments of visual function, appropriateness of surgery recommendation) and the outcome of care (satisfaction). Results: The adjusted regression coefficient for the VF-14 score significantly increased after the intervention as a predictor of the ophthalmologist’s assessment of visual function (β coefficient: control 0.10 vs. intervention 0.35, p < 0.05). The intervention did not increase the probability of an appropriate medical decision (OR=0.90; 95% CI: 0.42; 2,69) and it did not change patient satisfaction with care. Conclusions: Routine provision of education and feedback on the patient’s VF-14 Index score significantly increases agreement between patients’ and physicians’ assessments of functional capacity. The lack of a beneficial effect on management or outcome suggests the need for a more intense intervention to change medical practice.


Cataracts Disease management Functional status assessment 



confidence interval


health related quality of life


odds ratio


ophthalmologist’s assessment of the patient’s visual function


standard deviation


Visual Function Index VF-14


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vision 2020. The global initiative. Fact Sheet 213. WHO. 2000Google Scholar
  2. 2.
    Reidy, A, Minassian, DC, Vafidis, G.,  et al. 1998Prevalence of serious eye disease and visual impairment in a North London population: Population based, cross sectional studyBr Med J.31616431646Google Scholar
  3. 3.
    Klaver, C, Wolfs, R, Vingerling, JR.,  et al. 1998Age-specific prevalence and causes of blindness and visual impairment in an older population. The Rotterdam StudyArch Ophtalmol.116653658Google Scholar
  4. 4.
    Rodriguez, J, Sanchez, R, Muñoz, B.,  et al. 2002Causes of blindness and visual impairment in a population-based sample of US: HispanicsOphthalmology.109737743PubMedGoogle Scholar
  5. 5.
    VanNewkirk, MR, Weih, L, McCarty, CA.,  et al. 2002Causes of incident visual impairment: The Blue Mountains eye studyArch Ophtalmol.120613619Google Scholar
  6. 6.
    Woodcock, M, Shah, S, Smith, RJ. 2004Recent advances in customising cataract surgeryBr Med J.328926Google Scholar
  7. 7.
    Laidlaw, DA, Harrad, RA, Hopper, CD.,  et al. 1998Randomised trial of effectiveness of second eye cataract surgeryLancet352925929PubMedGoogle Scholar
  8. 8.
    Espallargues, M, Alonso, J. 1998Effectiveness of cataract surgery in Barcelona, Spain site results of an international studyJ Clin Epidemiol.51843852PubMedGoogle Scholar
  9. 9.
    Taylor, HR. 2000Cataract: How much surgery do we have to do?Br J Ophthalmol8412PubMedGoogle Scholar
  10. 10.
    Cataract Management Guideline Panel. Cataract in Adults. Management of functional impairment. Clinical Practice Guideline, Number 4. Rockville, MD: US Department of Health and Human Services, Public Health Service, Agency for Health Care Policy and Research. AHCPR pub no 93–0542. 1993Google Scholar
  11. 11.
    The Alberta Clinical Practice Guidelines Working Group. Guideline for Surgical & Non-Surgical Management of Cataract in the Otherwise Healthy Adult Eye. Edmonton, AB, Canada: The Alberta Clinical Practice Guidelines Program, 2002Google Scholar
  12. 12.
    American Academy of Ophthalmology, Anterior Segment Panel. Cataract in the adult eye. San Francisco, CA: American Academy of Ophthalmology (AAO), 2001; 62Google Scholar
  13. 13.
    Scottish Intercollegiate Guidelines Network (SIGN). Day case cataract surgery. A national clinical guideline. Edinburgh (Scotland): Scottish Intercollegiate Guidelines Network (SIGN); 2001, Aug., 20 p. (SIGN publication; no. 53)Google Scholar
  14. 14.
    The Royal College of Ophthalmologists. Cataract Surgery Guidelines. [on-line] 2001. publications/guidelines/cataract_surgery.htmlGoogle Scholar
  15. 15.
    Steinberg, EP, Tielsch, JM, Schein, O.,  et al. 1994The VF-14. An index of functional impairment in patients with cataract.Arch Ophthalmol.112630638PubMedGoogle Scholar
  16. 16.
    Mangione, CM, Phillips, RS, Seddon, JM.,  et al. 1992Development of the activities of daily vision scale. A measure of visual functional status.Med Care.3011111126PubMedGoogle Scholar
  17. 17.
    Espallargues, M, Valderas, JM, Alonso, J. 2000Provision of feedback on perceived health status to health care professionals A systematic review of its impactMed Care.38175186PubMedGoogle Scholar
  18. 18.
    Greenhalgh, J, Meadows, K. 1999The effectiveness of the use of patient-based measures of health in routine practice in improving the process and outcomes of patient care: A literature reviewJ Eval Clin Pract.5401416PubMedGoogle Scholar
  19. 19.
    Gilbody, SM, House, AO, Sheldon, T. 2002Routine administration of Health Related Quality of Life (HRQoL) and needs assessment instruments to improve psychological outcome – a systematic reviewPsychol Med.3213451356PubMedGoogle Scholar
  20. 20.
    Lydick, E. 2000Approaches to the interpretation of quality of life scalesMed Care.38II180II183PubMedGoogle Scholar
  21. 21.
    Valderas, JM, Alonso, J, Prieto, L.,  et al. 1999Content-based interpretation aids for health-related quality of life measures in clinical practice. An example for the visual function index VF-14Qual Life Res20043544Google Scholar
  22. 22.
    Cook, TD, Campbell, DT. 1979Quasiexperimentation: Design and Analysis Issues for Field SettingsHoughton Mifflin CoBoston, MA.Google Scholar
  23. 23.
    Cassard, SD, Patrick, DL, Damiano, AM.,  et al. 1995Reproducibility and responsiveness of the VF-14.Arch Ophthalmol.11315081513PubMedGoogle Scholar
  24. 24.
    Alonso, J, Espallargues, M, Folmer-Andersen, T.,  et al. 1997International applicability of the VF-14. An index of visual function in patients with cataracts.Ophthalmology104799807PubMedGoogle Scholar
  25. 25.
    Prieto L, Comas M, Vilagut G (1999) Turbo Pascal Measurement Program Rasch Measurement Transactions 12: 4, p. 672Google Scholar
  26. 26.
    Davies, AR, Ware, JE. 1991GHAA’s Consumer Satisfaction Survey and User’s Manual2Group Health Association America Inc.Washington, DCGoogle Scholar
  27. 27.
    Lee, PP, Kamberg, CJ, Hilborne, LH.,  et al. 1993Cataract Surgery: A literature review and ratings of appropriateness and crucialityRANDSanta Monica, CAGoogle Scholar
  28. 28.
    Rao, JNK, Scott, AJ. 1984On chi-squared tests for multiway contingency tables with cell proportions estimated from survey dataAnn Stat.124660Google Scholar
  29. 29.
    Eltinge JL, Sribney WM. Estimates of linear combinations and hypothesis tests for survey data. Stata Technical Bulletin 1996; 31: 31–42. Reprinted in Stata Technical Bulletin Reprints, Vol. 6, 246–259Google Scholar
  30. 30.
    Pinheiro, JC, Bates, DM. 2000Mixed effects models in S and S_PLUS., Statistics and Computing SeriesSpringer-VerlagNew York.Google Scholar
  31. 31.
    Kleinbaum, DG, Kupper, LL, Muller, KE. 1988Applied Regression Analysis and Other Multivariable MethodsDuxbury PressBelmont, CA.Google Scholar
  32. 32.
    Prieto, L, Lamarca, R, Casado, A. 1998Assessment of the reliability of clinical findings: The intraclass correlation coefficientMed Clin (Barc).110142145Google Scholar
  33. 33.
    Nunnally, JC, Bernstein, IH. 1994Psychometric Theory.3McGraw-HillNew YorkGoogle Scholar
  34. 34.
    R Development Core Team (2003). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051-00-3, http://www.R-project.orgGoogle Scholar
  35. 35.
    StataCorp.,  2003Stata Statistical Software: Release 8.0StataCorp LPCollege Station, TXGoogle Scholar
  36. 36.
    Swinskow TDV. Statistics at Square One. London: British Medical Association, 1996Google Scholar
  37. 37.
    Oxman, AD, Thomson, MA, Davis, DA, Haynes, RB. 1995No magic bullets: A systematic review of 102 trials of interventions to improve professional practiceCan Med Assoc J.15314231431Google Scholar
  38. 38.
    Velikova, G, Booth, L, Smith, AB.,  et al. 2004Measuring quality of life in routine oncology practice improves communication and patient well-being: A randomized controlled trialJ Clin Oncol.22714724PubMedGoogle Scholar
  39. 39.
    Temps mitjà de resolució i llistes d’espera per Regions Sanitàries. Generalitat de Catalunya. Departament de Salut. Servei Català de la Salut. Scholar
  40. 40.
    Working Party of the Standing Committee of the Hospitals of the European Union (HOPE) on management of waiting lists. Measuring and comparing waiting lists: A study in␣four European countries. Third report. Brussels, April 18, 2004.; (accessed December 24th 2004)Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • J. M. Valderas
    • 1
  • M. Rue
    • 1
  • G. Guyatt
    • 2
  • J. Alonso
    • 1
    • 3
  1. 1.Health Services Research UnitInstitut Municipal d’Investigació MèdicaBarcelonaSpain
  2. 2.Department of Clinical Epidemiology and BiostatisticsMcMaster UniversityOntarioCanada
  3. 3.Universitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations