DNA test to assess criminal responsibility: a Bayesian approach

  • Massimiliano Giacalone
  • Maria Rosaria Giannuzzi
  • Demetrio Panarello


Judicial statistics is generally referred to as the detection of data on crimes and trial outcomes, with subsequent analysis of the data thus detected. Statistics applied to the evaluation of evidence is increasingly being recognized as an important part of the modern criminal justice system. This paper is about the use of DNA test for identification and judicial purposes—the greatest revolution in criminal investigation—, also in reference to a concrete case of statistics applied to forensic genetics. Science and law walk together in the process of determining the procedural truth, from the preliminary investigation phase until the final judgement. Statistical evidence is not always considered reliable in the criminal procedure, as it is often based on a subjective probability concept. On the other hand, a rational evidence that can claim criminal liability “beyond any reasonable doubt” is necessary. In this regard, in this paper we analyze how DNA test can be considered a scientific, reliable and valid evidence when contextualized and evaluated together with the other elements found during the criminal procedure. The scientificity of identifying the individual by typing the DNA profile detected on the crime scene is thus validated, supported by the statistical calculation of the rarity of the probability that the typed genetic profile could be casually attributed to another individual in the world population.


DNA Bayes theorem Forensic statistics Random match probability Likelihood ratio 


  1. Aitken, C.G.G., Taroni, F.: Statistics and the Evaluation of Evidence for Forensic Scientists, vol. 16. Wiley, Chichester (2004)CrossRefGoogle Scholar
  2. Andreoli, A.: Identità alla prova. La controversa storia del test del Dna tra crimini, misteri e battaglie legali, vol. 36. Sironi Editore, Milan (2009)Google Scholar
  3. Balding, D.J.: Interpreting DNA evidence: can probability theory help? Stat. Sci. Court. 1, 443 (2000)Google Scholar
  4. Biedermann, A., Taroni, F.: Bayesian networks for evaluating forensic DNA profiling evidence: a review and guide to literature. Forensic Sci. Int. Genet. 6(2), 147–157 (2012)CrossRefGoogle Scholar
  5. Biedermann, A., Garbolino, P., Taroni, F.: The subjectivist interpretation of probability and the problem of individualisation in forensic science. Sci. Justice 53(2), 192–200 (2013)CrossRefGoogle Scholar
  6. Bramanti, R.: Valutazioni probabilistiche sui riscontri del DNA a scopo di identificazione criminale. Matematica nella Societa e nella Cultura 3, 447 (2009)Google Scholar
  7. Bunch, S.G.: Consecutive matching striation criteria: a general critique. J. Forensic Sci. 45(5), 955–962 (2000)CrossRefGoogle Scholar
  8. Butler, J.M.: Forensic DNA Typing: Biology, Technology, and Genetics of STR Markers. Academic Press, Cambridge (2005)Google Scholar
  9. Chakraborty, R., Ge, J.: Statistical weight of a DNA match in cold-hit cases. Forensic Sci. Commun. 11(3), 1–9 (2009)Google Scholar
  10. Champod, C.: Identification and individualization. Wiley Encyclopedia of Forensic Science (2009)Google Scholar
  11. Champod, C., Evett, I.W.: A probabilistic approach to fingerprint evidence. J. Forensic Identif. 51(2), 101–122 (2001)Google Scholar
  12. Champod, C., Jackson, G.: Comments on the current debate on the Bayesian approach in marks examination. Inf. Bull. Shoeprint Toolmark Exam. 8, 22 (2002)Google Scholar
  13. Colombo, E.: The Garlasco case and the digital alibi evidence: a difficult relationship between law and informatics. Digit. Evid. Electr. Signat. Law Rev. 14, 31 (2017)Google Scholar
  14. Cowell, R.G., Lauritzen, S.L., Mortera, J.: Identification and separation of DNA mixtures using peak area information. Forensic Sci. Int. 166(1), 28–34 (2007)CrossRefGoogle Scholar
  15. Cowell, R.G., Lauritzen, S.L., Mortera, J.: Probabilistic modelling for DNA mixture analysis. Forensic Sci. Int. Genet. Suppl. Ser. 1(1), 640–642 (2008)CrossRefGoogle Scholar
  16. Curran, J.M.: The statistical interpretation of forensic glass evidence. Int. Stat. Rev. 71(3), 497–520 (2003)CrossRefGoogle Scholar
  17. Curran, J.M., Buckleton, J.S., Triggs, C.M., Weir, B.S.: Assessing uncertainty in DNA evidence caused by sampling effects. Sci. Justice 42(1), 29–37 (2002)CrossRefGoogle Scholar
  18. Dawid, A.P., Mortera, J.: Forensic identification with imperfect evidence. Biometrika 85(4), 835–849 (1998)CrossRefGoogle Scholar
  19. Dawid, A.P.: Bayes’ theorem and weighing evidence by juries. In: Swinburne, R. (ed.) Proceedings of the British Academy. Bayes’ Theorem, vol. 113. Oxford University Press, Oxford (2002)Google Scholar
  20. Dawid, A.P., Mortera, J., Vicard, P.: Object-oriented Bayesian networks for complex forensic DNA profiling problems. Forensic Sci. Int. 169(2), 195–205 (2007)CrossRefGoogle Scholar
  21. Denécé, E.: The intelligence services’ historical and cultural context. In: Locke, C. (ed.) Handbook of European Intelligence Cultures, pp. 135–146. Roman & Littlefield (2016)Google Scholar
  22. Devlin, B.: The evidentiary value of a DNA database search. Biometrics 56(4), 1276–1277 (2000)CrossRefGoogle Scholar
  23. Donnelly, P., Friedman, R.D.: DNA database searches and the legal consumption of scientific evidence. Mich. Law Rev. 97(4), 931–984 (1999)CrossRefGoogle Scholar
  24. Easton, S.M.: Bodily samples and the privilege against self-incrimination. Crim. Law Rev. January, 18–29 (1991)Google Scholar
  25. Evett, I.W., Weir, B.S.: Interpreting DNA Evidence: Statistical Genetics for Forensic Scientists. Sinauer Associates Inc., Sunderland (1998)Google Scholar
  26. Evett I.W., Foreman, L.A., Jackson, G., Lambert, J.A: DNA profiling: a discussion of issues relating to the reporting of very small match probabilities. Crim. Law Rev. May, 341–355 (2000)Google Scholar
  27. Flores, S., Sun, J., King, J., Budowle, B.: Internal validation of the GlobalFiler™ Express PCR Amplification Kit for the direct amplification of reference DNA samples on a high-throughput automated workflow. Forensic Sci. Int. Genet. 10, 33–39 (2014)CrossRefGoogle Scholar
  28. Foreman, L.A., Evett, I.W.: Statistical analyses to support forensic interpretation for a new ten-locus STR profiling system. Int. J. Legal Med. 114(3), 147–155 (2001)CrossRefGoogle Scholar
  29. Foreman, L.A., Champod, C., Evett, I.W., Lambert, J.A., Pope, S.: Interpreting DNA evidence: A review. Int. Stat. Rev. 71(3), 473–495 (2003)CrossRefGoogle Scholar
  30. Frosini B.V.: La statistica di fronte alle regole dell’oltre il ragionevole dubbio e del più probabile che no, relazione in Atti del Convegno L’unità del sapere giuridico tra diritto penale e processo, Bari (2004)Google Scholar
  31. Frosini, B.V.: Forensic statistics: a general view. Stat. Appl. Italian J. Appl. Stat. 27(2), 105–127 (2015)Google Scholar
  32. Frosini, B.V.: The statistical evaluation of evidence. Ragion pratica 2, 317–334 (2016)Google Scholar
  33. Giacalone, M.: Manuale di Statistica Giudiziaria. Bel-Ami, Roma (2009)Google Scholar
  34. Grechenig, K., Nicklisch, A., Thöni, C.: Punishment despite reasonable doubt: a public goods experiment with sanctions under uncertainty. J. Empir. Legal Stud. 7(4), 847–867 (2010)CrossRefGoogle Scholar
  35. Hardy, G.H.: Mendelian proportions in a mixed population. Science 28(706), 49–50 (1908)CrossRefGoogle Scholar
  36. Horne, C., Rauhut, H: Using laboratory experiments to study law and crime. Qual. Quant. 47(3), 1639–1655 (2013)CrossRefGoogle Scholar
  37. Inman, K., Rudin, N.: Principles and Practice of Criminalistics: The profession of Forensic Science. CRC Press, London (2000)CrossRefGoogle Scholar
  38. Jeffreys, A.J., Wilson, V., Thein, S.L.: Individuals specific fingerprints of human DNA. Nature 316(6023), 76–79 (1985)CrossRefGoogle Scholar
  39. Kaye, D.H.: Rounding up the usual suspects: a legal and logical analysis of DNA trawling cases. NCL Rev. 87, 425 (2008)Google Scholar
  40. Koehler, J.J.: The psychology of numbers in the courtroom: how to make DNA match statistics seem impressive or insufficient. South. Calif. Law Rev. 74, 1275 (2001a)Google Scholar
  41. Koehler, J.J.: When are people persuaded by DNA match statistics? Law Hum. Behav. 25, 493 (2001b)CrossRefGoogle Scholar
  42. McCartney, C.: Forensic DNA sampling and the England and Wales National DNA Database: a sceptical approach. Crit. Criminol. 12(2), 157–178 (2004)CrossRefGoogle Scholar
  43. Mellen, B.G.: A Likelihood Approach to DNA Evidence. In: Gastwirth, J.L. (ed.) Statistical Science in the Courtroom, pp. 125–141. Springer, New York (2000)CrossRefGoogle Scholar
  44. Mortera, J., Dawid, A.P., Lauritzen, S.L.: Probabilistic expert systems for DNA mixture profiling. Theor. Popul. Biol. 63(3), 191–205 (2003)CrossRefGoogle Scholar
  45. National Research Council: The Evaluation of Forensic DNA Evidence. National Academy Press, Washington (1996)Google Scholar
  46. Rose, P.: Forensic Speaker Identification. CRC Press, Boca Raton (2003)Google Scholar
  47. Rudin, N., Inman, K.: An Introduction to Forensic DNA Analysis, vol. 3. CRC Press, Boca Raton (2001)Google Scholar
  48. Savatteri, G., Bianconi, G.: L’attentatuni: Storia di sbirri e di mafiosi. Baldini & Castoldi (2017)Google Scholar
  49. Sheppard, S.: The metamorphoses of reasonable doubt: how changes in the burden of proof have weakened the presumption of innocence. Notre Dame L. Rev. 78, 1165 (2002)Google Scholar
  50. Sinha, S.K.: Y-chromosome-genetics analysis and application in forensic science. Forensic Sci. Rev. 15, 77–201 (2003)Google Scholar
  51. Taroni, F., Bozza, S., Biedermann, A., Garbolino, P., Aitken, C.: Data Analysis in Forensic Science: A Bayesian Decision Perspective, vol. 88. Wiley, London (2010)CrossRefGoogle Scholar
  52. Vaciago, G., Ramalho, D.S.: Online searches and online surveillance: the use of trojans and other types of malware as means of obtaining evidence in criminal proceedings. Digit. Evid. Electr. Sign. Law Rev. 13, 88 (2016)Google Scholar
  53. van Oorschot, R.A., Ballantyne, K.N., Mitchell, R.J.: Forensic trace DNA: a review. Investig. Genet. 1(1), 14 (2010)CrossRefGoogle Scholar
  54. Wang, D.Y., Gopinath, S., Lagacé, R.E., Norona, W., Hennessy, L.K., Short, M.L., Mulero, J.J.: Developmental validation of the GlobalFiler® express PCR amplification kit: a 6-dye multiplex assay for the direct amplification of reference samples. Forensic Sci. Int. Genet. 19, 148–155 (2015)CrossRefGoogle Scholar
  55. Watson, J., Crick, F.: Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171(4356), 737–738 (1953)CrossRefGoogle Scholar
  56. Weinberg, W.: Uber den nachweis der vererbung beim menschen. Jh. Ver. vaterl. Naturk. Wurttemb. 64, 369–382 (1908)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Massimiliano Giacalone
    • 1
  • Maria Rosaria Giannuzzi
    • 2
  • Demetrio Panarello
    • 3
  1. 1.Department of Economics and StatisticsUniversity of Naples ‘Federico II’NaplesItaly
  2. 2.Department of Public SecurityItalian Ministry of InteriorRomeItaly
  3. 3.Department of Economic and Legal StudiesParthenope University of NaplesNaplesItaly

Personalised recommendations