Quality & Quantity

, Volume 49, Issue 4, pp 1633–1645 | Cite as

Incomparable: what now II? Absorption of incomparabilities by a cluster method

  • Rainer Bruggemann
  • Lars Carlsen


When newer compilations of decision support methods are examined, partial order methods as a central methodological aspect are rarely found. This is strange, since the role of multi-indicator systems is worldwide increasing. Multi-indicator systems induce in a natural manner partial orders. Why is partial order not seen as that important tool? The main reason appears to be that partially ordered sets are in general not completely ordered. There are incomparabilities, and incomparabilities do not lead to rankings. Thus, incomparabilities a priori hamper any decision. Approaching the decision from the need to get a unique ranking, it is clear that decision support systems aim toward deriving a one-dimensional scalar, by which a linear, i.e. a unique order can be derived. In the present paper an approach is selected to reduce the number of incomparabilities without losing the quality of insights, partially ordered sets allow. As an example economical relevant chemicals are studied.


Partially ordered sets Hierarchical cluster analysis  POP-substances 


  1. Annoni, P., Fattore, M., Bruggemann, R.: A multi-criteria fuzzy approach for analyzing poverty structure. Stat. Appl. 2011, 7–30 (2011)Google Scholar
  2. Bartel, H.G., Mucha, H.J.: Measures of incomparability and of inequality and their applications. In: Bruggemann, R., Carlsen, L., Wittmann, J. (eds.) Multi-Indicator Systems and Modelling in Partial Order, pp. 47–67. Springer, New York (2014)CrossRefGoogle Scholar
  3. Bock, H.H.: Automatische Klassifikation. Vandenhoeck & Ruprecht (1974).Google Scholar
  4. Bruggemann, R., Carlsen, L., Voigt, K., Wieland, R.: PyHasse software for partial order analysis. In: Bruggemann, R., Carlsen, L., Wittmann, J. (eds.) Multi-Indicator Systems and Modelling in Partial Order, pp. 389–423. Springer, New York (2014)CrossRefGoogle Scholar
  5. Bruggemann, R., Mucha, H.-J., Bartel, H.-G.: Ranking of polluted regions in South West Germany based on a multi-indicator system. MATCH Commun. Math. Comput. Chem. 69, 433–462 (2014)Google Scholar
  6. Bruggemann, R., Carlsen, L.: Incomparable - what now? MATCH Commun. Math. Comput. Chem. 71, 699–714 (2014)Google Scholar
  7. Bruggemann, R., Voigt, K.: A new tool to analyze partially ordered sets - application: ranking of polychlorinated biphenyls and alkanes/alkenes in River main, Germany. MATCH Commun. Math. Comput. Chem. 66, 231–251 (2011)Google Scholar
  8. Bruggemann, R., Patil, G.P.: Ranking and Prioritization for Multi-indicator Systems - Introduction to Partial Order Applications. Springer, New York (2011)CrossRefGoogle Scholar
  9. Bruggemann, R., Kerber, A., Restrepo, G.: Ranking objects using fuzzy orders, with an application to refrigerants. MATCH Commun. Math. Comput. Chem. 66, 581–603 (2011)Google Scholar
  10. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990)Google Scholar
  11. Fattore, M.: Hasse Diagrams, Poset Theory and Fuzzy Poverty Measures. Rivista Internazionale di Scienze Sociali 1, 63–75 (2008)Google Scholar
  12. Fattore, M., Bruggemann, R., Owsinski, J.: Using poset theory to compare fuzzy multidimensional material deprivation across regions. In: Ingrassia, S., Rocci, R., Vichi, M. (eds.) New Perspectives in Statistical Modeling and Data Analysis, pp. 49–56. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. Fattore, M., Grassi, R.: Measuring dynamics and structural change of time-dependent socio-economic networks. Qual. Quant. (2013). doi: 10.1007/s11135-013-9861-1
  14. Halfon, E., Reggiani, M.G.: On ranking chemicals for environmental hazard. Environ. Sci. Technol. 20, 1173–1179 (1986)CrossRefGoogle Scholar
  15. Innocenti Research Centre Report Card 7 , 2007. Child poverty in perspective, An Overview of child well-being in rich countries, Florence (2007)Google Scholar
  16. Jungnickel, D.: Transversaltheorie. Akademische Verlagsgesellschaft Geest&Portig KG, Leipzig (1982)Google Scholar
  17. Kosko, B.: Neural Networks and Fuzzy Systems - A dynamical Systems approach to Machine Learning. Pentice Hall, London (1992)Google Scholar
  18. Lugo. M. A.: Comparing Multidimensional Indices of Inequality: Methods and Applications. University of Oxford, Department of Economics, University of Oxford, (2013)
  19. Mucha, H.J.: Clustering techniques accompanied by matrix reordering techniques. In: Voigt, K., Welzl, G. (eds.) Order Theoretical Tools in Environmental Sciences - Order Theory (Hasse diagram technique) Meets Multivariate Statistics, pp. 129–140. Shaker - Verlag, Aachen (2002)Google Scholar
  20. Mucha, H.-J., Bartel, H.-G., Dolata, J.: Techniques of rearrangements in binary trees (dendrograms) and applications. MATCH Commun. Math. Comput. Chem. 54, 561–582 (2005)Google Scholar
  21. Sailaukhanuly, Y., Zhakupbekova, A., Amutova, F., Carlsen, L.: On the ranking of chemicals based on their PBT characteristics: Comparison of different ranking methodologies using selected POPs as an illustrative example. Chemosphere 90, 112–117 (2013)CrossRefGoogle Scholar
  22. Strassert, G.: Das Abwgungsproblem bei multikriteriellen Entscheidungen - Grundlagen und Lsungsansatz unter besonderer Bercksichtigung der Regionalplanung. Peter Lang, Europischer Verlag der Wissenschaften, Frankfurt am Main (1995)Google Scholar
  23. Trotter, W.T.: Combinatorics and Partially Ordered Sets: Dimension Theory. The Johns Hopkins University Press, Baltimore (1992)Google Scholar
  24. Van de Walle, B., De Baets, B., Kersebaum, K.C.: Fuzzy multi-criteria analysis of cutting techniques in a nuclear dismantling project. Fuzzy Sets Syst. 74, 115–126 (1995)CrossRefGoogle Scholar
  25. Vijgen, J., Eigenhofer C.: Obsolete pesticides. A ticking time bomb and why we have to act now. Centre for European Policy Studies (CEPS), Special report available for download at (2009).
  26. Wieland, R., Bruggemann, R.: Hasse diagram technique and Monte Carlo simulations. MATCH Commun. Math. Comput. Chem. 70, 45–59 (2013)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of EcohydrologyLeibniz - Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  2. 2.Awareness CenterRoskildeDenmark

Personalised recommendations