Advertisement

Quality & Quantity

, Volume 49, Issue 3, pp 1013–1022 | Cite as

A micro approach to cognitive skills’ growth in a university context

  • Anna Simonetto
  • Emma Zavarrone
Article
  • 122 Downloads

Abstract

This paper focuses on the measurement of human capital, specifically on the growth of cognitive skills (CS) during the higher education at university. CS have already been evaluated in a macroeconomic perspective inside the neoclassical growth models, but not still in a micro perspective. However the measure of educational quality and learning process is still an issue not fully addressed. The micro approach allows the researcher to focus on the evaluation of CS acquisition process. Based on these measurements, different types of CS accumulation can be identified. We will investigate CS through nonlinear latent growth modeling, and we will apply this methodology to administrative data of an Italian university.

Keywords

Cognitive skills Latent growth model Gompertz curve Exponential curve  

References

  1. Barro, R.J.: Education and economic growth. Ann. Econ. Financ. 14(2), 277–304 (2013)Google Scholar
  2. Barro, R.J.: Economic growth in a cross section of countries. Q. J. Econ. 106(2), 407–443 (1991)CrossRefGoogle Scholar
  3. Bianconcini, S., Cagnone, S.: A general multivariate latent growth model with applications to student achievement. J. Educ. Behav. Stat. 37, 339–364 (2012)CrossRefGoogle Scholar
  4. Browne, M.W., MacCallum, R.C., Kim, C., Andersen, B.L., Glaser, R.: When fit indices and residuals are incompatible. Psychol. Methods 7, 403–421 (2002)CrossRefGoogle Scholar
  5. Civardi, M., Zavarrone, E.: Estimating University human capital through education evaluation. In: Fabbris, L. (ed.) Effectiveness of University Education in Italy, pp. 369–380. Physica-Verlag, Heidelberg (2007)Google Scholar
  6. Costa, M.: The Dagum model of human capital distribution. Statistica LXVI(3), 313–324 (2006)Google Scholar
  7. Dagum, C., Slottje, D.J.: A new method to estimate the level and distribution of the household human capital with applications. J. Struct. Change Econ. Dyn. 11, 67–94 (2000)CrossRefGoogle Scholar
  8. Dagum, C., Vittadini, G., Lovaglio, P.G.: Formative indicators and effects of a causal model for household human capital with application. Econ. Rev. 26(5), 579–596 (2007)CrossRefGoogle Scholar
  9. Geiser, C., Keller, B.T., Lockhart, G.: First-versus second-order latent growth curve models: some insights from latent state-trait theory. Struct. Equ. Model. J. 20(3), 479–503 (2013). doi: 10.1080/10705511.2013.797832 CrossRefGoogle Scholar
  10. Grimm, K.J., Ram, N.: Nonlinear growth models in Mplus and SAS. Struct. Equ. Model. 6, 676–701 (2009)CrossRefGoogle Scholar
  11. Grimm, K.J., Ram, N., Hamagami, F.: Nonlinear growth curves in developmental research. Child. Dev. 82(5), 71–1357 (2011)CrossRefGoogle Scholar
  12. Grimm, K.J., Zhang, Z., Hamagami, F., Mazzocco, M.: Modeling nonlinear change via latent change and latent acceleration frameworks: examining velocity and acceleration of growth trajectories. Multivar. Behav. Res. 48, 117–143 (2013)CrossRefGoogle Scholar
  13. Hanushek, E.A.: Economic growth in developing countries: the role of human capital. Econ. Educ. Rev. 37, 204–212 (2013). doi: 10.1016/j.econedurev.2013.04.005 CrossRefGoogle Scholar
  14. Hanushek, E.A., Kimko, D.D.: Schooling, labor force quality, and the growth of nations. Am. Econ. Rev. 90(5), 1184–1208 (2000)CrossRefGoogle Scholar
  15. Hu, L.T., Bentler, P.M.: Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct. Equ. Model. 6(1), 1–55 (1999)CrossRefGoogle Scholar
  16. Mariani, P., Mussini, M., Zavarrone, E.: Measuring dissimilarity in learning capital using time trajectories. Stat. Appl. Ital. J. Appl. Stat. 23(1), 103–113 (2013)Google Scholar
  17. Meredith, W., Tisak, J.: Latent curve analysis. Psychometrika. 55(1), 107–122 (1990)CrossRefGoogle Scholar
  18. McArdle, J.J., Epstein, D.B.: Latent growth curves within developmental structural equation models. Child. Dev. 58(1), 110–133 (1987)CrossRefGoogle Scholar
  19. McArdle, J.J.: Latent variable modeling of differences and changes with longitudinal data. Ann. Rev. Psychol. 60, 577–605 (2009)CrossRefGoogle Scholar
  20. Muthén, L.K., Muthén, B.O.: Mplus user’s guide (6th ed.) [Computer software manual]. Muthén & Muthén, Los Angeles (1998–2010).Google Scholar
  21. OECD: Social capital, human capital and health what is the evidence? OECD-IRDES (2001). http://www.oecd.org/innovation/research/45760738.pdf
  22. Romer, M.: Endogenous technological change. J. Polit. Econ. 98(5), S71–S102 (1990)CrossRefGoogle Scholar
  23. Woessmann, L.: Specifying human capital. J. Econ. Surv. 17(3), 239–270 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Economics and ManagementUniversity of BresciaBresciaItaly
  2. 2.Department of Communication, Behaviour and Consumption “Giampaolo Fabris”IULM UniversityMilanItaly

Personalised recommendations