Quality & Quantity

, Volume 48, Issue 3, pp 1785–1797 | Cite as

Toward a simple structure: a comparison of different rotation techniques

  • Giovanni Di Franco


This paper thematise the problem of seeking and devising a simple structure, when the solution envisages the extraction of more than one component or factor. To this avail, we shall make a comparison between a number of rotation techniques, both orthogonal and oblique, to evaluate just how capable they are of delivering the highest possible semplification of the data yielded by the analysis. To evaluate the results obtained through empirical controls, we have drawn up a simple structure index. For reasons of space, we shall apply principal components analysis to our method, although the results obtained here also hold for factor analysis.


Simple structure Rotation techniques Exploratory factor analysis  Principal components analysis Orthogonal rotation Oblique rotation 


  1. Bentler, E.M.: Factor simplicity index and transformations. Psychometrika 42, 277–295 (1977)CrossRefGoogle Scholar
  2. Carroll, J.B.: An analytical solution for approximating simple structure in factor analysis. Psychometrika 18(1), 23–38 (1953)CrossRefGoogle Scholar
  3. Cattell, R.B.: The scree test for the number of factors. Multivar. Behav. Res. 1, 245–276 (1966)CrossRefGoogle Scholar
  4. Cattell, R.B.: The Scientific Use of Factor Analysis in Behavioral and Life Sciences. Plenum Press, New York (1978)CrossRefGoogle Scholar
  5. Comrey, A.L., Lee, H.B.: A First Course in Factor Analysis. Academic Press, New York (1992)Google Scholar
  6. Cudeck, R., MacCallum, R.C. (eds.) Factor Analysis at 100. Historical Developments and Future Directions. Lawrence Erlbaum Associated Publishers, New Jersey (2007)Google Scholar
  7. Di Franco, G.: Tecniche e modelli di analisi multivariata. FrancoAngeli, Milan (2011)Google Scholar
  8. Di Franco, G.: EDS: Esplorare, Descrivere e Sintetizzare i dati. Guida pratica all’analisi dei dati nella ricerca sociale. FrancoAngeli, Milan (2001)Google Scholar
  9. Di Franco, G., Marradi, A.: Factor Analysis and Principal Components Analysis. FrancoAngeli, Milan (2013, in print)Google Scholar
  10. Di Franco, G., Marradi, A.: Analisi Fattoriale e Analisi in Componenti Principali. Bonanno, Rome-Catania (2003)Google Scholar
  11. Fleming, J.S.: Computing measures of simplicity of fit for loadings in factor-analytically derived scales. Behav. Res. Methods Instrum. Comput. 34(4), 520–524 (2003)CrossRefGoogle Scholar
  12. Fleming, J.S.: The case for hyperplane fitting rotations in factor analysis: a comparative study of simple structure. J. Data Sci. 10, 419–439 (2012)Google Scholar
  13. Harman, H.H.: Modern Factor Analysis. University Press of Chicago, Chicago (1967)Google Scholar
  14. Harris, C.W., Kaiser, H.F.: Oblique factor analytic solutions by orthogonal transformations. Psychometrika 29(4), 347–362 (1964)CrossRefGoogle Scholar
  15. Heim, A.W.: Psychological Testing. Oxford University Press, London (1975)Google Scholar
  16. Hendrickson, A.E., White, P.O.: Promax: a quick method for rotation to oblique simple structure. Br. J. Stat. Psychol. 17, 65–70 (1964)CrossRefGoogle Scholar
  17. Jennrich, R.I.: In: Cudeck, R., MacCallun, R.C. (eds.) Rotation Methods, Algorithms, and Standard Errors, pp 315–335 (2007)Google Scholar
  18. Jennrich, R.I., Sampson, P.F.: Rotation for simple loadings. Psychometrika 31, 313–323 (1966)CrossRefGoogle Scholar
  19. Kaiser, H.F.: The varimax criterion for analytic rotation in factor analysis. Psychometrika 23, 187–200 (1958)CrossRefGoogle Scholar
  20. Kaiser, H.F.: The application of electronic computers to factor analysis. Educ. Psychol. Meas. 20, 141–151 (1960)CrossRefGoogle Scholar
  21. Kaiser, H.F.: An index of factorial simplicity. Psychometrika 39, 31–36 (1974)CrossRefGoogle Scholar
  22. Kim, J.O., Mueller, C.W.: Introduction to Factor Analysis. What It Is and How To Do It. Sage, London (1978a)Google Scholar
  23. Kim, J.O., Mueller, C.W.: Factor Analysis. Statistical Methods and Practical Issues. Sage, London (1978b)Google Scholar
  24. Kline, P.: An Easy Guide to Factor Analysis. Routledge, London (1994)Google Scholar
  25. Lorenzo-Seva, U.: A factor simplicity index. Psychometrika 68(1), 49–60 (2003)CrossRefGoogle Scholar
  26. Marradi, A.: La costruzione degli indici, i valori nelle subculture regionali, società e valori, l’analisi fattoriale. Tullio-Altan and Marradi, 289–423 (1976)Google Scholar
  27. Marradi, A.: Dimensioni dello spazio politico in Italia. Rivista Italiana di Scienza Politica 2, 263–296 (1979)Google Scholar
  28. Marradi, A.: In: Jackson, D.J., Borgatta, E.F. (eds.) Factor Analysis as an Aid in the Formation and Refinement of Empirically Useful Concepts, pp 11–49 (1981)Google Scholar
  29. Nunnally, J.O.: Psychometric Theory. McGraw-Hill, New York (1978)Google Scholar
  30. Overall, J.E., Klett, C.J.: Applied Multivariate Analysis. McGraw-Hill, New York (1972)Google Scholar
  31. Thurstone, L.L.: The Vectors of Mind. Multiple-factor Analysis for the Isolation of Primary Traits. University of Chicago Press, Chicago (1935)CrossRefGoogle Scholar
  32. Thurstone, L.L.: Multiple Factor Analysis. University of Chicago Press, Chicago (1947)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.University of Roma La SapienzaRomeItaly

Personalised recommendations