Advertisement

Quality & Quantity

, Volume 47, Issue 2, pp 1237–1257 | Cite as

Qualitative/quantitative integration in the inductive observational study of interactive behaviour: impact of recording and coding among predominating perspectives

  • Pedro Sánchez-Algarra
  • M. Teresa Anguera
Article

Abstract

A strong dichotomy has traditionally been established between qualitative and quantitative approaches. This question has been the subject of intense debate from a methodological point of view, and in recent years there are clear signs that the conflict is being overcome; nevertheless, we are still some way from a genuine position of complementarity and integration, and the issue remains to be considered in the process of theorization along the tortuous path that leads from the particular to the general. The proposal in this article takes a further step forward as regards this question, this time with respect to the study of interactive behaviour. The key is once again the consideration of a “complete unit” of analysis, but the logic of the observational methodology process enables the perspectives to be sequenced: the study begins with a predominantly qualitative approach before subjecting the data to a given type of recording (through the important support of field formats) and coding (preferably computerized), thus producing a matrix of formally interchangeable data; finally, the criterion is reversed and the study continues under a predominantly quantitative perspective.

Keywords

Qualitative/quantitative integration Qualitative approach Quantitative approach Observation study Interactive behaviour 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anguera M.T.: Observational typology. Qual. Quant. 13(6), 449–484 (1979)Google Scholar
  2. Anguera M.T.: La investigación cualitativa. Educar 10, 23–50 (1986)Google Scholar
  3. Anguera, M.T.: Hacia una representación conceptual: Teorías y modelos. In: Arnau, J., Carpintero, H. (eds.) Tratado de Psicología General: Historia, teoría y método, vol. 1, pp. 543–580. Madrid, Alhambra (1989)Google Scholar
  4. Anguera M.T.: Metodología cualitativa. In: Anguera, M.T., Arnau, J., Ato, M., Martínez, M.R., Pascual, J., Vallejo, G. (eds.) Métodos de investigación en Psicología., pp. 513–522. Síntesis, Madrid (1995)Google Scholar
  5. Anguera, M.T.: Hacia una evaluación de la actividad cotidiana y su contexto: ?‘Presente o futuro para la metodología? Lecture of admission to the Reial Acadèmia de Doctors, Barcelona (1999). [Reprinted in A. Bazán Ramírez, A. Arce Ferrer (eds.) Métodos de evaluación y medición del comportamiento en Psicología, pp. 11–86. Instituto Tecnológico de Sonora y Universidad Autónoma de Yucatán, México (2001)]Google Scholar
  6. Anguera M.T.: Observational methods (General). In: Fernández-Ballesteros, R. (eds.) Encyclopedia of psychological assessment, vol. 2, pp. 632–637. Sage, London (2003)Google Scholar
  7. Anguera M.T.: Posición de la metodología observacional en el debate entre las opciones metodológicas cualitativa y cuantitativa. ?‘Enfrentamiento, complementariedad, integración? Psicol. Rev. 10(15), 13–27 (2004)Google Scholar
  8. Anguera M.T.: Microanalysis of T-patterns. Analysis of symmetry/asymmetry in social interaction. In: Anolli, L., Duncan, S., Magnusson, M., Riva, G. (eds.) The hidden structure of social interaction. From genomics to culture patterns, pp. 51–70. IOS Press, Amsterdam (2005)Google Scholar
  9. Anguera M.T., Blanco A., Losada J.L.: Diseños observacionales, cuestión clave en el proceso de la metodología observacional. Metodología de las Ciencias del Comportamiento 3(2), 135–160 (2001)Google Scholar
  10. Anguera M.T., Izquierdo C.: Methodological approaches in human communication. From complexity of situation to data analysis. In: Riva, G., Anguera, M.T., Mantovani, F., Wiederhold, H. (eds.) From communication to presence. Emotions and culture towards the ultimate communicative experience, pp. 203–222. IOS Press, Cognition (2006)Google Scholar
  11. Bakeman R., Gottman J.M.: Observing interaction. Introduction to sequential analysis. Cambridge University Press, Cambridge (1986)Google Scholar
  12. Bakeman R., Gottman J.M.: Applying observational methods: a systematic view. In: Osofsky, J.D. (eds.) Handbook of infant development, pp. 818–853. Wiley, New York (1987)Google Scholar
  13. Bakeman R., Quera V.: Analyzing interaction: sequential analysis with SDIS and GSEQ. Cambridge University Press, New York (1995)Google Scholar
  14. Becker H.S., Geer B.: Participant observation: analysis of qualitative data. In: Adams, R.N., Preiss, J.J. (eds.) Human organization research, pp. 267–289. Dorsey, Homewood (1970)Google Scholar
  15. Benoliel J.Q.: Advancing nursing science: qualitative approaches. West. J. Nurs. Res. 6, 1–8 (1984)CrossRefGoogle Scholar
  16. Blaikie N.W.H.: A critique of the use of triangulation in social research. Qual. Quant. 25, 115–136 (1991)CrossRefGoogle Scholar
  17. Blanco A., Losada J.L., Anguera M.T.: Analytic techniques in observational designs in environment-behavior relation. Medio Ambiente y Comportamiento Humano 4(2), 111–126 (2003)Google Scholar
  18. Blaxter M.: Symposium on the handling on qualitative data. Introduction. Sociol. Rev. 27(4), 649–650 (1979)CrossRefGoogle Scholar
  19. Bogdan R., Taylor S.J.: Introduction to qualitative research methods. Wiley, New York (1975)Google Scholar
  20. Bulmer M.: Concepts in the analysis of qualitative data. Sociol. Rev. 27(4), 651–677 (1979)CrossRefGoogle Scholar
  21. Camerino, O., Castañer, M., Anguera, M.T.: Mixed methods research in the movement sciences: case studies in sport, physical education and dance. Routledge, Abingdon, UK (2012)Google Scholar
  22. Caracelli V.J., Greene J.C.: Data analysis strategies for mixed-method evaluation designs. Educ. Eval. Policy Anal. 15, 195–207 (1993)Google Scholar
  23. Castellano J., Hernández-Mendo A., Morales V., Anguera M.T.: Optimizing a probabilistic model of the development of play in soccer. Qual. Quant. 41(1), 93–104 (2007)CrossRefGoogle Scholar
  24. Cohen J.: Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates, Hillsdale (1988)Google Scholar
  25. Cook, T.D., Reichardt, (eds.): Qualitative and quantitative methods in evaluation research. Sage, Newbury Park (1982)Google Scholar
  26. Cronbach L.J.: The two disciplines of scientific psychology. Am. Psychol. 12, 671–684 (1957)CrossRefGoogle Scholar
  27. Cronbach L.J.: Beyond the two disciplines of scientific psychology. Am. Psychol. 30, 116–127 (1975)CrossRefGoogle Scholar
  28. Denzin N.K.: The research act. McGraw-Hill, New York (1978)Google Scholar
  29. Duncan, S.: Using Theme to analyze interaction structure and strategy. In: Paper presented at Measuring Behavior 2002, 4th International Conference on Methods and Techniques in Behavioral Research, Amsterdam, The Netherlands, 24–26 August 2002Google Scholar
  30. Erickson F.: Some approaches to injury in school-community ethnography. Anthropol. Educ. Q. 8, 58–69 (1977)CrossRefGoogle Scholar
  31. Erzberger C., Prein G.: Triangulation: validity and empirically-based hypothesis construction. Qual. Quant. 31, 141–154 (1997)CrossRefGoogle Scholar
  32. Fredericks M., Miller S.I.: Some brief notes on the “unfinished business” of qualitative inquiry. Qual. Quant. 31, 1–13 (1977)CrossRefGoogle Scholar
  33. Greene, J.C., Caracelli, V.J. (eds.): Advances in mixed-method evaluation: the challenges and benefits of integrating diverse paradigms. Jossey-Bass, San Francisco (1997)Google Scholar
  34. Greene J.C., Caracelli V.J., Graham W.F.: Toward a conceptual framework for mixed-method evaluation designs. Educ. Eval. Policy Anal. 11, 255–274 (1989)Google Scholar
  35. Hempel C.G.: Aspects of scientific explanation and other essays in the philosophy of science. The Free Press, New York (1965)Google Scholar
  36. Hernández-Mendo A., Anguera M.T.: Behavioral structure in sociomotor sports: Roller-Hockey. Qual. Quant. 36, 347–378 (2002)CrossRefGoogle Scholar
  37. Hogenraad R., McKenzie D.P.: Replicating text: the cumulation of knowledge in social science. Qual. Quant. 33, 97–116 (1999)CrossRefGoogle Scholar
  38. Hogenraad R., McKenzie D.P., Péladeau N.: Force and influence in content analysis: the production of new social knowledge. Qual. Quant. 37, 221–238 (2003)CrossRefGoogle Scholar
  39. House E.R.: Integrating the quantitative and qualitative. In: Reichardt, C.S., Rallis, S.F. (eds.) The qualitative–quantitative debate: new perspectives, pp. 13–22. Jossey-Bass, San Francisco (1994)Google Scholar
  40. Izquierdo C., Anguera M.T.: The role of the morphokinetic notational system in the observation of movement. In: Cavé, Ch., Guaïtella, I., Santi, S. (eds.) Oralité et Gestualité. Interactions et comportements multimodaux dans la communication., pp. 385–389. L’Harmattan, Paris (2001)Google Scholar
  41. Jonsson G.K., Anguera M.T., Blanco-Villaseñor A., Losada J.L., Hernández-Mendo A., Ardá T., Camerino O., Castellano J.: Hidden patterns of play interaction in soccer using SOF-CODER. Behav. Res. Methods Instrum. Comput. 38(3), 372–381 (2006)CrossRefGoogle Scholar
  42. Kopinak J.K.: The use of triangulation in a study of refugee well-being. Qual. Quant. 33, 169–183 (1999)CrossRefGoogle Scholar
  43. Krippendorf K.: Content analysis: an introduction to its methodology. Sage, Bevery Hills (1980)Google Scholar
  44. Kuhn T.S.: The structure of scientific revolutions. University of Chicago Press, Chicago (1962)Google Scholar
  45. Magnusson, M.S.: Le Temps et les patterns syntaxiques du comportement humain: Modèle, méthode et programme THÈME. Revue des Conditions de Travail, hors série 284–314 (1988)Google Scholar
  46. Magnusson M.S.: Structure syntaxique et ryhmes comportamentaux: Sur la détection de rythmes cachés. Sci. Tech. Anim. Lab. 14(2), 143–147 (1989)Google Scholar
  47. Magnusson M.S.: THÈME user’s manual: with notes on theory, model and pattern detection method. University of Iceland, Reykjavik (1993)Google Scholar
  48. Magnusson M.S.: Hidden real-time patterns in intra- and inter-individual behavior. Eur. J. Psychol. Assess. 12(2), 112–123 (1996)CrossRefGoogle Scholar
  49. Magnusson M.S.: Discovering hidden time patterns in behavior: T-patterns and their detection. Behav. Res. Methods Instrum. Comput. 32(1), 93–110 (2000)CrossRefGoogle Scholar
  50. Mayo D.G.: Duhem’s problem, the Bayesian way, and error statistics, or “what’s belief got to do with it?”. Philos. Sci. 64(2), 222–244 (1997)CrossRefGoogle Scholar
  51. Meijer P.C., Verloop N., Beijaard D.: Multi-method triangulation in a qualitative study on teachers’ practical knowledge: an attempt to increase internal validity. Qual. Quant. 36, 145–167 (2002)CrossRefGoogle Scholar
  52. Miles M.B., Huberman A.M.: Qualitative date analysis: a source book of new methods. Sage, Newbury Park (1994)Google Scholar
  53. Miller S.I., Gatta J.L.: The use of mixed methods models and designs in the human sciences: problems and prospects. Qual. Quant. 40, 595–610 (2006)CrossRefGoogle Scholar
  54. Morgan D.L.: Practical strategies for combining qualitative and quantitative methods: application to health research. Qual. Health Res. 8, 362–376 (1998)CrossRefGoogle Scholar
  55. Mucchielli R.: L’observation psychologique et psychosociologique. E.S.F, Paris (1974)Google Scholar
  56. Muskens G.: Mathematical analysis of content. Qual. Quant. 19, 99–103 (1985)CrossRefGoogle Scholar
  57. Norris S.P.: Defining observational competence. Serv. Educ. 68(2), 129–142 (1984)CrossRefGoogle Scholar
  58. Onwuegbuzie A.J., Leech N.L.: Taking the “Q” out of research: teaching research methodology courses without the divide between quantitative and qualitative paradigms. Qual. Quant. 39, 267–296 (2005a)CrossRefGoogle Scholar
  59. Onwuegbuzie A.J., Leech N.L.: On becoming a pragmatist researcher: the importance of combining quantitative and qualitative research methodologies. Int. J. Soc. Res. Methodol. 8(5), 375–387 (2005b)CrossRefGoogle Scholar
  60. Onwuegbuzie A.J., Leech N.L.: A call for qualitative power analyses. Qual. Quant. 41, 105–121 (2007)CrossRefGoogle Scholar
  61. PatternVision: ThèmeCoder [software]. http://www.patternvision.com (2002). Accessed 15 January 2002
  62. Patton M.Q.: Qualitative evaluation methods. Sage, Beverly Hills (1980)Google Scholar
  63. Perea, A., Alday, L., Castellano, J.: Software para la observación deportiva Match Vision Studio. In: Paper presented at the III Congreso Vasco del Deporte. Socialización y Deporte / Kirolaren III Euskal Biltzarra, Sozializazioa era Virola, Vitoria, Spain, 10–13 November 2004Google Scholar
  64. Reichardt C.S., Rallis S.F.: Qualitative and quantitative inquiries are not incompatible: a call for a new partnership. N Dir. Program Eval. 61, 85–91 (1994)CrossRefGoogle Scholar
  65. Roberts, C.W. (eds.): Text analysis for the Social Sciences. Methods for drawing statistical inferences from texts and manuscripts.. Erlbaum, Mahwah (1997)Google Scholar
  66. Roberts C.W.: A conceptual framework for quantitative text analysis. Qual. Quant. 34, 259–274 (2000)CrossRefGoogle Scholar
  67. Sackett G.P.: Lag sequential analysis as a data reduction technique in social interaction research. In: Sawin, D.B., Hawkins, R.C., Walker, L.O., Penticuff, J.H. (eds.) Exceptional infant. Psychosocial risks in infant-environment transactions., pp. 300–340. Brunner/Mazel, New York (1980)Google Scholar
  68. Sale J.E.M., Lohfeld L.H., Brazil K.: Revisiting the quantitative-qualitative debate: implications for mixed-methods research. Qual. Quant. 36, 43–53 (2002)CrossRefGoogle Scholar
  69. Sánchez-Algarra P., Anguera M.T.: The collapsability theorem in log-linear analysis of categorical data: an application in program evaluation. Qual. Quant. 31(2), 199–206 (1997)CrossRefGoogle Scholar
  70. Sánchez-Algarra P., Anguera M.T.: Time management in the cost evaluation of limited resource programs. Qual. Quant. 39(4), 391–411 (2005)CrossRefGoogle Scholar
  71. Sivesind K.H.: Structured, qualitative comparison. Qual. Quant. 33, 361–380 (1999)CrossRefGoogle Scholar
  72. Smith J.K.: Quantitative versus qualitative research: An attempt to clarify the issue. Educ. Res. 12, 6–13 (1983)Google Scholar
  73. Smith R.B.: Social structural inquiries, Part I, Qualitative and quantitative theories. Qual. Quant. 39, 801–825 (2005)CrossRefGoogle Scholar
  74. Steckler A., McLerroy K.R., Goodman R.M., Bird S.T., McCormick L.: Toward integrating qualitative and quantitative methods: an introduction. Health Educ. Q. 19, 1–8 (1992)CrossRefGoogle Scholar
  75. Strauss A., Corbin J.: Basics of qualitative research. Grounded theory procedures and techniques. Sage, Newbury Park (1990)Google Scholar
  76. Tesch R.: Qualitative research: analysis and software tools. The Falmer Press, Bristol (1990)Google Scholar
  77. Verschuren P.J.M.: Holism versus reductionism in modern social science research. Qual. Quant. 35, 389–405 (2001)CrossRefGoogle Scholar
  78. Vissers G., Heyne G., Peters V., Guerts J.: The validity of laboratory research in social and behavioural science. Qual. Quant. 35, 129–145 (2001)CrossRefGoogle Scholar
  79. Wallace W.L.: The logic of science in sociology. Aldine-Atherton, New York (1971)Google Scholar
  80. Weber R.P.: Measurement models for content analysis. Qual. Quant. 17, 127–149 (1983)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Statistics, Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
  2. 2.Methodology of Behavioral Sciences Department, Faculty of Psychology, IR3C Research InstituteUniversity of BarcelonaBarcelonaSpain

Personalised recommendations