Advertisement

Quality & Quantity

, Volume 48, Issue 1, pp 91–110 | Cite as

Conditional respect towards the pedestrian: difference between men and women and risk modeling by the Bayesian approach

  • Sandrine Gaymard
  • Teodor Tiplica
Article

Abstract

Research in the field of social representations and of norm conditionality has enabled the construction of specific tools such as the conditional script questionnaire (CSQ) and the use of various methods of analysis. The first aim of this study is to show the differences of conditionality between male and female drivers toward pedestrians. To test this hypothesis, a version of the CSQ has been fitted to the pedestrian. We show that conditionality toward the pedestrian is more significant for men in certain specific situations and we highlight that women are more aware of the vulnerability of pedestrians. The second stage is aimed at improving knowledge between conditionality and risk taking, by using Bayes’ theorem for the first time. It is demonstrated that a Bayesian network based on the CSQ can be built in order to model the perception of hazardous situations.

Keywords

Conditional script questionnaire Pedestrian Gender differences Risk Bayes’ theorem Bayesian networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abric J.C.: Jeux, Conflits et Représentations Sociales. Thèse de doctorat d’Etat, Université de Provence, Aix-en-Provence (1976)Google Scholar
  2. Abric J.C.: Les représentations sociales: aspects théoriques. In: Abric, J.C. (ed.) Pratiques Sociales et Représentation., pp. 11–35. Presses Universitaires de France, Paris (1994)Google Scholar
  3. Byrnes J.P., Miller D.C., Schafer W.D.: Gender differences in risk taking: a meta-analysis. Psychol. Bull. 125(3), 367–383 (1999)CrossRefGoogle Scholar
  4. Cohen J.: Chance, Skill and Luck. Penguin, Hammonds-Worth, Middlesex (1960)Google Scholar
  5. Cohen J.: Behaviour in Uncertainty and its Social Implications. Basic Books, New York (1964)Google Scholar
  6. Cohen J., Preston B.: Causes & Prevention of Road Accidents. Faber & Faber limited, London (1968)Google Scholar
  7. Coombs C.H., Dawes R.M., Tversky A.: Psychologie Mathématique. Presses Universitaires de France, Paris (1975)Google Scholar
  8. Edwards W.: Behavioral decision theory. Ann. Rev. Psychol. 12, 473–498 (1961)CrossRefGoogle Scholar
  9. Edwards W.: Dynamic decision theory and probabilistic information processing. Hum. Factors 4, 59–73 (1962)Google Scholar
  10. Edwards W.: Social Utilities. Eng. Econ. 6, 119–129 (1971)Google Scholar
  11. Edwards W., Lindman H., Savage J.: Bayesian statistical inference for psychological research. Psychol. Rev. 70, 193–242 (1963)CrossRefGoogle Scholar
  12. Evans L.: Traffic Safety and the Driver. Van Nostrand Reinhold, New York (1991)Google Scholar
  13. Finucane M.L., Slovic P., Mertz C.K., Flynn J., Satterfield T.: Gender, race and perceived risk: the ‘white-male’ effect. In: Slovic, P. (ed.) The Feeling of Risk., pp. 125–140. Earthscan, London (2010)Google Scholar
  14. Flament C.: Pratiques et représentations sociales. In: Beauvois, J.L., Joule, R.V., Monteil, J.M. (eds) Perspectives Cognitives et Conduites Sociales. Tome 1: Théories Implicites et Conflits Cognitifs, pp. 143–150. Del Val, Cousset (1987)Google Scholar
  15. Flament C.: Structure et dynamique des représentions sociales. In: Jodelet, D. (ed.) Les Représentations Sociales., pp. 204–219. Presses Universitaires de France, Paris (1989)Google Scholar
  16. Flament C.: Structure, dynamique et transformation des représentations sociales. In: Abric, J.C. (ed.) Pratiques Sociales et Représentations., pp. 37–57. Presses Universitaires de France, Paris (1994a)Google Scholar
  17. Flament C.: Aspects périphériques des représentations sociales. In: Guimelli, C. (ed.) Structures et Transformations des Représentations Sociales., pp. 85–118. Delachaux et Niestlé, Lausanne (1994b)Google Scholar
  18. Flament C.: Représentation sociale et normativité: quelques pistes. In: Buschini, F., Kalampakis, N. (ed.) Penser la vie, Le social, La nature. Mélanges en L’honneur de Serge Moscovici., pp. 257–261. Maison des Sciences de l’Homme, Paris (2001)Google Scholar
  19. Flynn J., Slovic P., Mertz C.M.: Gender, race and perception of environmental health risk. Risk Anal. 14(6), 1101–1108 (1994)CrossRefGoogle Scholar
  20. Gaymard, S.: Les études supérieures comme enjeu dans un contexte de négociation implicite entre les filles d’origine maghrébine et leurs parents: Aspects conditionnels et normatifs des représentations sociales dans une situation de biculturalisme. Thése de Doctorat publiée, Université de Provence, Aix-en-Provence (1999)Google Scholar
  21. Gaymard, S.: La représentation de la conduite chez des jeunes conducteurs: Une étude de la conditionnalité routière. Recherche Transports Sécurité (2007). doi: 10.3166/rts.97.339-359
  22. Gaymard S.: Norms in social representations: two studies with french young drivers. Eur. J. Psychol. Appl. Leg. Context 1(2), 165–181 (2009)Google Scholar
  23. Gaymard S., Agbotsoka T., Nzobounsana V.: La Représentation des Interactions Conducteurs/piétons: Une Approche Des émotions Actes du Colloque Organisé par l’ADRIPS: “Emotions. en Psychologie Sociale” (p. 49). Université Paris Ouest Nanterre La Défense, France (2009)Google Scholar
  24. Gaymard S., Allain P., Osiurak F., Le Gall D.: The conditions of respect of rules in young and elderly drivers: an exploratory study. Eur. J. Psychol. Appl. Leg. Context 3(1), 11–28 (2011)Google Scholar
  25. Gaymard S., Andrés S., Nzobounsana V.: La representación social y las emociones de los conductores Franceses y Españoles acerca de los peatones. In: Expósito, F., Herrera, M.C., Buela-Casal, G., Novo, M., Fariña, F. (eds.) Psicología Jurídica. Áreas de Investigación., pp. 435–442. Consellería de Presidencia, Xustiza e Administracións Públicas, Santiago de Compostela (2011)Google Scholar
  26. Gaymard, S., Boucher, V., Nzobounsana, V., Greffier, F., Fournela, F.: La perception des piétons par les conducteurs: corrélations entre les données d’un œil électronique et le verbatim des conducteurs/ drivers’ perception of pedestrians: correlations between the data of an electronic eye and drivers’ verbatim. Can. J. Behav. Sci./Rev. Can. Sci. Comport. (2012). http://psycnet.apa.org/doi/10.1037/a0025789 (advance online publication)
  27. Griffiths T.L., Yuille A.: A primer on probabilistic inference. Trends Cogn. Sci. (supplement to special issue on probabilistic models of cognition) 10(7), 1–11 (2006)Google Scholar
  28. Jensen F.V.: An Introduction to Bayesian Networks. Taylor and Francis, London (1996)Google Scholar
  29. Jordan M.I., Ghahramani Z., Jaakkola T.S., Saul L.K.: An introduction to variational methods for graphical models. In: Jordan, M.I. (ed.) Learning in Graphical Models., Kluwer Academic Publishers, Boston (1998)CrossRefGoogle Scholar
  30. Lebart L., Morineau A., Piron M.: Statistique Exploratoire Multidimensionnelle, 3ème edn. Dunod, Paris (2000)Google Scholar
  31. Moscovici, S.: La psychanalyse, son image et son public, 2ème édn. Presses Universitaires de France, Paris (1961/76)Google Scholar
  32. Nzobounsana, V., Gaymard, S.: Les analyses canoniques simple et généralisée linéaires: application à des données psychosociales. Math. Sci. Hum./Math. Soc. Sci. (2010). doi: 10.4000/msh.11653
  33. Parker D., West R., Stradling S., Manstead A.: Behavioural characteristics and involvement in different types of traffic accident. Accid. Anal. Prev. 27(4), 571–581 (1995)CrossRefGoogle Scholar
  34. Pearl J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)Google Scholar
  35. Pearl, J., Russel, S.: Bayesian networks. Report (R-277), November 2000. In: Arbib, M. (eds) Handbook of Brain Theory and Neural Networks, pp 157–160. MIT Press, Cambridge (2001)Google Scholar
  36. Satterfield T.A., Mertz C.K., Slovic P.: Discrimination, vulnerability, and justice in the face of risk. Risk Anal. 24(1), 115–129 (2004)CrossRefGoogle Scholar
  37. Schank R.C., Abelson R.P.: Scripts, Plan, Goals and Understanding: An Inquiry into Human Knowledge Structures. Erlbaum, Hillsdale (1977)Google Scholar
  38. Sécurité Routiére: Les grandes données de l’accidentologie. http://www2.securiteroutiere.gouv.fr/IMG/Synthese/SY_GDA.pdf (2006). Accessed 10 Mar 2008
  39. Sjöberg L.: Factors in risk perception. Risk Anal. 20(1), 1–9 (2000)CrossRefGoogle Scholar
  40. Sjöberg L., Torell G.: The development of risk acceptance and moral valuation. Scand. J. Psychol. 34, 223–236 (1993)CrossRefGoogle Scholar
  41. Sjöberg L., Winroth E.: Risk, moral value of actions, and moods. Scand. J. Psychol. 27, 191–208 (1986)CrossRefGoogle Scholar
  42. Stern P.C., Dietz T., Kalof L.: Value orientations, gender and environmental concerns. Environ. Behav. 24, 322–348 (1993)CrossRefGoogle Scholar
  43. Waylen A., McKenna F.: Cradle Attitudes—Grave Consequences. The Development of Gender Differences in Risky Attitudes and Behaviour in Road Use. AA Foundation for Road Safety, Basingstoke (2002)Google Scholar
  44. Zhang N.L., Poole D.: Exploiting causal independence in Bayesian network inference. J. Artif. Intell. Res. 5, 301–328 (1996)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Laboratoire de Psychologie des Pays de la Loire (LPPL) UPRES EA 4638, Maison des Sciences HumainesLUNAM Université, University of AngersAngers cedex 01France
  2. 2.Laboratoire en Sûreté de Fonctionnement, Qualité et Organisation (LASQUO), UPRES EA 3858, Institut des Sciences et Techniques de l’Ingénieur d’Angers (ISTIA)LUNAM Université, University of AngersAngersFrance

Personalised recommendations