Quality & Quantity

, Volume 47, Issue 2, pp 735–752 | Cite as

A multi-process second-order latent growth curve model for subjective well-being

  • M. Fátima Salgueiro
  • Peter W. F. Smith
  • Marcel D. T. Vieira


This article proposes a new approach to modelling longitudinal perceptions of subjective well-being (SWB). Several measures have been proposed in the literature to assess SWB and its determinants. Statistical approaches adopted include ordered probit models, fixed and random effects models and cross-lagged structural equation models. The British Household Panel Survey (BHPS) is a longitudinal national representative survey and contains several measures of SWB. Using BHPS data from 2002 to 2005, this article considers two main latent dimensions of life satisfaction: satisfaction with leisure and satisfaction with material issues. The latent trajectories of these two latent life satisfaction dimensions are simultaneously modeled in Mplus, using a multi-process, second-order latent growth curve model. Significant determinants of leisure and material satisfaction growth trajectories include socio-demographic characteristics, number of children in the household, number of hours worked per week, income and perceived health status.


BHPS Complex survey design Latent growth curve model Multi-process model Subjective well-being 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asparouhov T.: Sampling weights in latent variable modeling. Struct. Equ. Model. 12(3), 411–434 (2005)CrossRefGoogle Scholar
  2. Bollen K.A., Curran P.J.: Latent Curve Models. A Structural Equation Perspective. Wiley, Hoboken (2006)Google Scholar
  3. Collins, L.M., Sayer, A.G. (eds): New Methods for the Analysis of Change. American Psychological Association, Washington (2001)Google Scholar
  4. Chambers, R.L., Skinner, C.J. (eds): Analysis of Survey Data. Wiley, Chichester (2003)Google Scholar
  5. Christoph B., Noll H.H.: Subjective well-being in the European Union during the 90s. Soc. Indic. Res. 64, 521–546 (2003)CrossRefGoogle Scholar
  6. Dancan G.: Using panel studies to understand household behaviour and well-being. In: Rose, D. (eds) Researching Social and Economic Change: The Uses of Household Panel Studies, Routledge, London (2000)Google Scholar
  7. Dolan P., Peasgood T.: Measuring well-being for public policy: preferences or experiences?. J. Leg. Stud. 37, 5–31 (2008)CrossRefGoogle Scholar
  8. Dolan P., Peasgood T., White M.: Do we really know what makes us happy? A review of the economic literature on the factors associated with subjective well-being. J. Econ. Psychol. 29, 94–122 (2008)CrossRefGoogle Scholar
  9. Duncan T., Duncan S., Strycker L.: An Introduction to Latent Variable Growth Curve Modeling. Concepts, Issues, and Applications. Lawrence Erlbaum Associates, Mahwah (2006)Google Scholar
  10. Hancock G.R., Kuo W.-L., Lawrence F.R.: An illustration of second-order latent growth models. Struct. Equ. Model. 8(3), 470–489 (2001)CrossRefGoogle Scholar
  11. Helliwell J.F.: How’s life? Combining individual and national variables to explain subjective well-being. Econ. Model. 20, 331–360 (2003)CrossRefGoogle Scholar
  12. Judge T.A., Watanabe S.: Another look at the job satisfaction-life satisfaction relationship. J. Appl. Psychol. 78(6), 939–948 (1993)CrossRefGoogle Scholar
  13. Khattab N., Fenton S.: What makes young adults happy? Employment and non-work as determinants of life satisfaction. Sociology 43(1), 11–26 (2009)CrossRefGoogle Scholar
  14. Lucas R.E., Donnellan M.B.: How stable is happiness? Using the STARTS model to estimate the stability of life satisfaction. J. Res. Pers. 41, 1091–1098 (2007)CrossRefGoogle Scholar
  15. McArdle, J.J. : Dynamic but structural equation modeling of repeated measures. In: Nesselroade, J.R., Cattell, R.B. (eds.) TheHandbook of Multivariate Experimental Psychology, pp. 561–614. Plenum Press, New York (1988)CrossRefGoogle Scholar
  16. Meredith W., Tisak J.: Latent curve analysis. Psychometrika 55(1), 107–122 (1990)CrossRefGoogle Scholar
  17. Muthén, B.O.: Mplus Technical Appendices. Vol. 2, Muthén & Muthén, Los Angeles (1998–2004)Google Scholar
  18. Muthén, L.K., Muthén, B.O. : Mplus User’s Guide. Vol. 5, Muthén & Muthén, Los Angeles (1998–2007)Google Scholar
  19. Muthén, B.O., du Toit, S.H.C., Spisic, D.: Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes. Unpublished manuscript. University of California, Los Angeles (1997)Google Scholar
  20. Preacher K.J., Wichman A.L., MacCallum R.C., Briggs N.E.: Latent Growth Curve Modeling. Sage publications, Thousand Oaks (2008)Google Scholar
  21. Skinner C.J., Vieira M.D.T.: Variance estimation in the analysis of clustered longitudinal survey data. Surv. Methodol. 33(1), 3–12 (2007)Google Scholar
  22. Skinner, C.J., Holt, D., Smith, T.M.F. (eds): Analysis of Complex Surveys. Wiley, Chichester (1989)Google Scholar
  23. Taylor, M.F., Brice, J., Buck, N., Prentice-Lane, E. (eds.): British Household Panel Survey User Manual Volume A: Introduction, Technical Report and Appendices. University of Essex, Colchester (2008)Google Scholar
  24. Vieira M.D.T., Skinner C.J.: Estimating models for panel survey data under complex sampling. J. Off. Stat. 24, 343–364 (2008)Google Scholar
  25. Vieira J.C., Menezes A., Gabriel P.: Low pay, higher pay and job quality: empirical evidence for Portugal. Appl. Econ. Lett. 12, 505–511 (2005)CrossRefGoogle Scholar
  26. White H.: A heteroscedasticity-consistent covariance matrix estimator and a direct test for heteroscedasticity. Econometrica 48(4), 817–838 (1980)CrossRefGoogle Scholar
  27. Yang C.-C., Yang C.-C., Yeh K.-H.: Ecological-inference-based latent growth models: modeling changes of alienation. Qual. Quant. 39, 125–135 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M. Fátima Salgueiro
    • 1
  • Peter W. F. Smith
    • 2
  • Marcel D. T. Vieira
    • 3
  1. 1.Department of Quantitative Methods and UNIDEInstituto Universitario de Lisboa (ISCTE-IUL)LisboaPortugal
  2. 2.Southampton Statistical Sciences Research InstituteUniversity of SouthamptonSouthamptonUK
  3. 3.Departamento de EstatísticaUniversidade Federal de Juiz de ForaJuiz de ForaBrazil

Personalised recommendations