Quality & Quantity

, Volume 47, Issue 1, pp 367–381 | Cite as

The urgent need for figures of merit in order to evaluate the performance of teaching and learning methodologies: constructive criticism from a scientific metrological discipline

  • Waldo Quiroz
  • Carla Olivares
  • Cristian Merino
  • Manuel Bravo


An objective criterion for an a priori identification of which methodologies are more appropriate for dealing with the problem of teaching or learning science at a determined school level, in the case of education, are very lax or missed. Today it is difficult to objectively differentiate which is the best strategy for dealing with a determined teaching/learning problem. Objectivity can be achieved through modern logic taken from the formal sciences, such as statistics. In the case of metrological discipline such analytical chemistry, where as in education, there is a continuous development of new methodologies and the performance are always evaluated through which analytical chemist call “figures of merit”. In this article, we establish a guide for future research in education to develop objective parameters (figures of merit) to evaluate and compare different teaching and learning strategies following the example of other disciplines such as analytical chemistry.


Figures of merit Didactometry Teaching and learning science 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boque R., Ferre J., Faber N.M., Rius F.X.: Limit of detection estimator for second-order bilinear calibration. Anal. Chim. Acta 451(2), 313–321 (2002)CrossRefGoogle Scholar
  2. Bunge M.: Teoria y Realidad. Ariel, Montreal (1981)Google Scholar
  3. Cardenas S., Valcarcel M.: Analytical features in qualitative analysis. Trends Anal. Chem. 24(6), 477–487 (2005). doi: 10.1016/j.trac.2005.03.006 CrossRefGoogle Scholar
  4. Cason H.: The concepts of learning and memory. Psychol. Rev. 44(1), 54–61 (1937)CrossRefGoogle Scholar
  5. Cason H.: Dr. Kellogg on the definition of learning. Psychol. Rev. 45(1), 101–105 (1938)CrossRefGoogle Scholar
  6. Demir A., Abell S.K.: Views of inquiry: mismatches between views of science education faculty and students of an alternative certification program. J. Res. Sci. Teach. 47(6), 716–741 (2010). doi: 10.1002/tea.20365 CrossRefGoogle Scholar
  7. Demirci C.: Constructivist learning approach in science teaching. HU. J. Educ. 37, 24–35 (2009)Google Scholar
  8. Ekins R., Edwards P.: On the meaning of “sensitivity”. Clin. Chem. 43(10), 1824–1831 (1997)Google Scholar
  9. Eustace B.W.: Learning a complex concept at differing hierarchical levels. J. Educ. Psychol. 60(6, Part 1), 449–452 (1969)CrossRefGoogle Scholar
  10. Glynn S.M., Taasoobshirazi G., Brickman P.: Science motivation questionnaire: construct validation with nonscience majors. J. Res. Sci. Teach. 46(2), 127–146 (2009). doi: 10.1002/tea.20267 CrossRefGoogle Scholar
  11. Hamza K.M., Wickman P.O.: Beyond explanations: What else do students need to understand science?. Sci. Educ. 93(6), 1026–1049 (2009). doi: 10.1002/sce.20343 CrossRefGoogle Scholar
  12. Härdle W., Simar L.: Applied multivariate statistical analysis. Springer, Berlin (2003)Google Scholar
  13. Harel G., Koichu B.: An operational definition of learning. J. Math. Behav. 29(3), 115–124 (2010)CrossRefGoogle Scholar
  14. Ignacio Pozo M.G.-C.: Aprender y Enseñar Ciencias. Morata, Madrid (1998)Google Scholar
  15. Kaartinen S., Kumpulainen K.: Collaborative inquiry and the construction of explanations in the learning of science. Learn. Instr. 12(2), 189–212 (2002)CrossRefGoogle Scholar
  16. Kang N.H.: Learning to teach science: personal epistemologies, teaching goals, and practices of teaching. Teach. Teach. Educ. 24(2), 478–498 (2008). doi: 10.1016/j.tate.2007.01.002 CrossRefGoogle Scholar
  17. Kotzee B.: Seven posers in the constructivist classroom. Lond. Rev. Educ. 8(2), 177–187 (2010)CrossRefGoogle Scholar
  18. Lazonder A.W., Wilhelm P., Hagemans M.G.: The influence of domain knowledge on strategy use during simulation-based inquiry learning. Learn. Instr. 18(6), 580–592 (2008)CrossRefGoogle Scholar
  19. Lehrer R., Schauble L., Lucas D.: Supporting development of the epistemology of inquiry. Cogn. Dev. 23(4), 512–529 (2008). doi: 10.1016/j.cogdev.2008.09.001 CrossRefGoogle Scholar
  20. Linsinger T.P.J.: Use of recovery and bias information in analytical chemistry and estimation of its uncertainty contribution. Trends Anal. Chem. 27(10), 916–923 (2008). doi: 10.1016/j.trac.2008.08.013 CrossRefGoogle Scholar
  21. Martine Mahner M.B.: Fundamentos de Biofilosofía. Siglo XXI, Mexico, DF (2000)Google Scholar
  22. Martorell I., Medrano M., Sole C., Vila N., Cabeza L.F.: Inquiry-based learning for older people at a university in Spain. Educ. Gerontol. 35(8), 712–731 (2009). doi: 10.1080/03601270802708434 CrossRefGoogle Scholar
  23. Meinrath G.: The intention of truth, objectivity and metrology. Accredit. Qual. Assur. 12(10), 515–523 (2007). doi: 10.1007/s00769-007-0302-5 CrossRefGoogle Scholar
  24. Merino C., Sanmarti N.: How young children model chemical change. Chem. Educ. Res. Pract. 9(3), 196–207 (2008). doi: 10.1039/b812408f CrossRefGoogle Scholar
  25. Minner D.D., Levy A.J., Century J.: Inquiry-based science instruction—What is it and does it matter? Results from a research synthesis years 1984 to 2002. J. Res. Sci. Teach. 47(4), 474–496 (2010). doi: 10.1002/tea.20347 CrossRefGoogle Scholar
  26. Niaz M.: Whither constructivism? A chemistry teachers’ perspective. Teach. Teach. Educ. 24(2), 400–416 (2008). doi: 10.1016/j.tate.2007.10.006 CrossRefGoogle Scholar
  27. Olivares, C.: Una propuesta para promover niveles de abstracción en primer ciclo básico, fundamentado en la epistemología de las ciencias: Una experiencia exploratoria. Trabajo de Titulación, Pontificia Universidad Católica de Valparaíso (2010)Google Scholar
  28. Olivieri A.C., Faber N.K.M., Ferre J., Boque R., Kalivas J.H., Mark H.: Uncertainty estimation and figures of merit for multivariate calibration. Pure Appl. Chem. 78(3), 633–661 (2006). doi: 10.1351/pac200678030633 CrossRefGoogle Scholar
  29. Peterson S.M., French L.: Supporting young children’s explanations through inquiry science in preschool. Early Child. Res. Q. 23(3), 395–408 (2008). doi: 10.1016/j.ecresq.2008.01.003 CrossRefGoogle Scholar
  30. Potin-Gautier M., Pannier F., Quiroz W., Pinochet H., De Gregori I.: Antimony speciation analysis in sediment reference materials using high-performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry. Anal. Chim. Acta 553(1–2), 214–222 (2005)CrossRefGoogle Scholar
  31. Quiroz W., De Gregori I., Basilio P., Bravo M., Pinto M., Lobos M.G.: Heavy weight vehicle traffic and its relationship with antimony content in human blood. J. Environ. Monit. 11(5), 1051–1055 (2009). doi: 10.1039/b815838j CrossRefGoogle Scholar
  32. Quiroz W., Arias H., Bravo M., Pinto M., Lobos M.G., Cortés M.: Development of analytical method for determination of Sb(V), Sb(III) and TMSb(V) in occupationally exposed human urine samples by HPLC–HG-AFS. Microchem. J. 97, 78–84 (2011)CrossRefGoogle Scholar
  33. Reio T.G., Petrosko J.M., Wiswell A.K., Thongsukmag J.: The measurement and conceptualization of curiosity. J. Genet. Psychol. 167(2), 117–135 (2006)CrossRefGoogle Scholar
  34. Sadler T.D., Burgin S., McKinney L., Ponjuan L.: Learning science through research apprenticeships: a critical review of the literature. J. Res. Sci. Teach. 47(3), 235–256 (2010). doi: 10.1002/tea.20326 Google Scholar
  35. Samarapungavan A., Mantzicopoulos P., Patrick H.: Learning science through inquiry in kindergarten. Sci. Educ. 92(5), 868–908 (2008). doi: 10.1002/sce.20275 CrossRefGoogle Scholar
  36. Schummer J.: The philosophy of chemistry. Endeavour 27(1), 37–41 (2003). doi: 10.1016/s0160-9327(03)00004-8 CrossRefGoogle Scholar
  37. Takagaki M., Tazume H., Nakanishi Y., Nami I., Sasaki A.: Motivation-enhancing environments in science education : a case study of teaching the properties of solutions to sixth graders. Jpn. J. Educ. Psychol. 57(2), 223–236 (2009)CrossRefGoogle Scholar
  38. Taverniers I., Van Bockstaele E., De Loose M.: Trends in quality in the analytical laboratory. I. Traceability and measurement uncertainty of analytical results. Trends Anal. Chem. 23(7), 480–490 (2004). doi: 10.1016/s0165-9936(04)00733-2 CrossRefGoogle Scholar
  39. Thompson M., Ellison S.L.R., Wood R.: Harmonized guidelines for single-laboratory validation of methods of analysis—(IUPAC technical report). Pure Appl. Chem. 74(5), 835–855 (2002)CrossRefGoogle Scholar
  40. Valcarcel M., Lendl B.: Analytical chemistry at the interface between metrology and problem solving. Trends Anal. Chem. 23(8), 527–534 (2004). doi: 10.1016/j.trac.2004.05.001 CrossRefGoogle Scholar
  41. Valcarcel M., Rios A.: The analytical problem. Trends Anal. Chem. 16(7), 385–393 (1997)CrossRefGoogle Scholar
  42. Valcarcel M., Rios A.: A metrological hierarchy for analytical chemistry. Trends Anal. Chem. 18(1), 68–75 (1999)CrossRefGoogle Scholar
  43. Valcarcel M., Cardenas S., Gallego M.: Qualitative analysis revisited. Crit. Rev. Anal. Chem. 30(4), 345–361 (2000)CrossRefGoogle Scholar
  44. Valcarcel M., Gomez-Hens A., Rubio S.: Selectivity in analytical chemistry revisited. Trends Anal. Chem. 20(8), 386–393 (2001)CrossRefGoogle Scholar
  45. Valderrama P., Braga J.W.B., Poppi R.J.: State of the art of figures of merit in multivariate calibration. Quim. Nova 32(5), 1278–1287 (2009)CrossRefGoogle Scholar
  46. Vershinin V.I., Zolotov Y.A.: Periodization of the history of chemical analysis and analytical chemistry as a branch of science. J. Anal. Chem. 64(8), 859–867 (2009). doi: 10.1134/s1061934809080152 CrossRefGoogle Scholar
  47. Wang H.X., Pu M.: A method of determining selectivity coefficients based on the practical slope of ion selective electrodes. Chin. Chem. Lett. 13(4), 355–358 (2002)Google Scholar
  48. Washburne J.N.: The definition of learning. J. Educ. Psychol. 27(8), 603–611 (1936)CrossRefGoogle Scholar
  49. Wenning C.J.: Levels of inquiry: hierarchies of pedagogical practices and inquiry processes. J. Phys. Teach. Educ. 2, 3–11 (2005a)Google Scholar
  50. Wenning C.J.: Minimizing resistance to inquiry-oriented science instruction: the importance of climate setting. J. Phys. Teach. Educ. 3, 10–15 (2005b)Google Scholar
  51. Williams W.M., Papierno P.B., Makel M.C., Ceci S.J.: Thinking like a scientist about real-world problems: the Cornell Institute for Research on Children Science Education Program. J. Appl. Dev. Psychol. 25(1), 107–126 (2004). doi: 10.1016/j.appdev.2003.11.002 CrossRefGoogle Scholar
  52. Zeaiter M., Roger J.M., Bellon-Maurel V., Rutledge D.N.: Robustness of models developed by multivariate calibration. Part I: the assessment of robustness. Trends Anal. Chem. 23(2), 157–170 (2004). doi: 10.1016/s0165-9936(04)00307-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Waldo Quiroz
    • 1
    • 2
  • Carla Olivares
    • 2
  • Cristian Merino
    • 2
  • Manuel Bravo
    • 1
  1. 1.Laboratorio de Química Analítica y Ambiental, Instituto de QuímicaPontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.Laboratorio de Didáctica de la Química, Instituto de QuímicaPontificia Universidad Católica de ValparaísoValparaísoChile

Personalised recommendations