Advertisement

Quality & Quantity

, Volume 45, Issue 4, pp 885–899 | Cite as

Integrating qualitative and quantitative methods to enhance means-end approach

  • Wann-Yih Wu
  • Chen-Su Fu
Research Note

Abstract

Conventionally adopted means-end chain (MEC) methodology uses product attributes, consequences and values to indicate consumption behavior hierarchies regarding specific products. These hierarchies are useful for elucidating consumer product knowledge and devise effective marketing strategies. In the MEC literature, the qualitative laddering scheme is the main approach used to identify the contents of consumer cognitive structures. However, MEC suffers limitations associated with the subjective research judgment. To overcome these weaknesses of MEC analysis, this work presents a novel laddering-matrix analysis (LMA) based on the quantitative matrix algorithm. The analytical results demonstrated that by integrating LMA and MEC it is possible to explore the information of the summary implication matrix without bias, thus providing extremely useful material for developing MEC computer software.

Keywords

Laddering technique Matrix analysis Means-end chains 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bourne H.B., Jenkins M.: Eliciting managers’ personal values: an adaptation of the laddering interview method. Organ. Res. Methods 8(4), 410–428 (2005)CrossRefGoogle Scholar
  2. Goldenberg M.A, Klenosky D.B., O’Leary J.T., Templin T.J.: A means-end investigation of ropes course experiences. J. Leis. Res. 32(2), 208–224 (2000)Google Scholar
  3. Gutman J.: A means-end chain model based on consumer categorization processes. J. Mark. 46, 60–72 (1982)CrossRefGoogle Scholar
  4. Gutman J.: Means-end chains as goal hierarchies. J. Psychol. Market. 14(6), 545–560 (1997)CrossRefGoogle Scholar
  5. Herrmann A., Huber F., Braunstein C.: Market-driven product and service design: bridging the gap between customer needs, quality management, and customer satisfaction. Int. J. Prod. Econ. 66, 77–96 (2000)CrossRefGoogle Scholar
  6. Jacoby J., Chestnut R., Weigl K., Fisher W.: Pre-purchase information acquisition: description of a process methodology, research paradigm, and pilot investigation. Adv. Consum. Res. 3, 306–314 (1976)Google Scholar
  7. Johnson F.C., Crudge S.E.: Using the repertory grid and laddering technique to determine the user’s evaluative model of search engines. J. Doc. 63(2), 259–280(22) (2007)CrossRefGoogle Scholar
  8. Kahle L.R., Kennedy P.: Using the list of values (LOV) to understand consumers. J. Serv. Mark. 2(4), 49–56 (1988)CrossRefGoogle Scholar
  9. Knoke D., Burt R.S.: Prominence. In: Burt, R.S., Minor, M.J. (eds) Applied Network Analysis, Sage, California (1983)Google Scholar
  10. Kotler P.: Marketing Management, Analysis, Planning, Implementation, and Control. Prentice-Hall, New Jersey (1997)Google Scholar
  11. Lages L.F., Fernandes J.C.: The SERPVAL scale: A multi-item instrument for measuring service personal values. J. Bus. Res. 58, 1562–1572 (2005)CrossRefGoogle Scholar
  12. Lin C.F.: Quality-delivery system: a conceptual framework of attribute level-value linkages. Total. Qual. Manag. Bus. Excel. 14(10), 1079–1092 (2003)CrossRefGoogle Scholar
  13. Lin C.F., Wang H.F.: A decision-making process model of young online shoppers. Cyberpsychol. Behav. 11(6), 759–761 (2008)CrossRefGoogle Scholar
  14. Orsingher C., Marzocchi G.L.: Hierarchical representation of satisfactory consumer service experience. Int J. Serv. Ind. Manag. 14(2), 200–216 (2003)CrossRefGoogle Scholar
  15. Pieters R., Baumgartner H., Allen D.: A means-end chain approach to consumer goal structures. Int. J. Res. Mark. 12, 227–244 (1995)CrossRefGoogle Scholar
  16. Reynolds T.J., Gutman J.: Laddering theory, method, analysis, and interpretation. J. Advert. Res. 28(1), 11–31 (1988)Google Scholar
  17. Reynolds T.J., Olson J.C.: Understanding Consumer Decision Making: The Means-End Approach to Marketing and Advertising Strategy. New Jersey, Mahwah (2001)Google Scholar
  18. Reynolds T.J., Phillips J.M.: A review and comparative analysis of laddering research methods: recommendations for quality metrics. Rev. Mark. Res. 5(Dec), 130–174 (2008)Google Scholar
  19. Reynolds T.J., Whitlark D.B.: Applying laddering data to communications strategy and advertising practice. J. Advert. Res. 35, 9–17 (1995)Google Scholar
  20. Rokeach M.J.: The Nature of Human Values. The Free Press, New York (1973)Google Scholar
  21. ter Hofstede F., Audenaert A., Steenkamp J.B.E.M., Wedel M.: An investigation into the association pattern technique as a quantitative approach to measuring means-end chains. Int. J. Res. Mark. 15, 37–50 (1998)CrossRefGoogle Scholar
  22. Vriens M., ter Hofstede F.: Linking attributes, benefits, and consumer values. Mark. Res. 12(3), 5–10 (2000)Google Scholar
  23. Wagner T.: Shopping motivation revised: a means-end chain analytical perspective. Int. J. Retail. Distrib. Manag. 35(7), 569–582 (2007)CrossRefGoogle Scholar
  24. Woodside A.G.: Advancing means-end chains by incorporating Heider’s balance theory and Fournier’s consumer-brand relationship typology. Psychol. Market. 21(4), 279–294 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Business AdministrationNational Cheng Kung UniversityTainan CityTaiwan
  2. 2.Chinese Culture UniversityTaipeiTaiwan

Personalised recommendations