Quality & Quantity

, Volume 44, Issue 3, pp 537–549 | Cite as

Using the fuzzy associative memory (FAM) computation to explore the R&D project performance

  • Yu-Shan Chen
  • Ke-Chiun Chang
Research Note


This study found out there were nonlinear relationships between the R&D project performance and its determinants—R&D project manager’s skills, quality of project environment, and teamwork effectiveness—by using the Fuzzy Associative Memory (FAM) technique in the IC design industry of Taiwan. The results showed that R&D project manager’s skills and quality of project environment had significantly inverse U-shaped effects on the R&D project performance, while teamwork effectiveness had almost monotonic positive influence upon it. Therefore, there were optimal values for R&D project manager’s skills and quality of project environment for the R&D project performance in the Taiwanese IC design companies, although they can raise teamwork effectiveness as much as possible.


Fuzzy associative memory (FAM) Management of R&D projects R&D project manager’s skills Quality of project environment Teamwork effectiveness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alderfer C.P.: Group and intergroup relations. In: Hackman, J.R., Suttle, J.L. (eds) Improving Life at Work: Behavioral Science Approaches to Organizational Change, pp. 227–246. Goodyear Corp., Santa Monica, CA (1977)Google Scholar
  2. Bahrami A., Lynch M., Dagli C.H.: Intelligent design retrieval and packaging system: application of neural networks in design and manufacturing. Int. J. Prod. Res. 33(2), 405–426 (1995)CrossRefGoogle Scholar
  3. Baker B.N., Murphy D.C., Fisher D.: Factors affecting project success. In: Cleland, D.I., King, W.R. (eds) Project Management Handbook, pp. 669–685. Van Nostrand Reinhold Corp., New York (1983)Google Scholar
  4. Boynton A.C., Zmud R.W.: An assessment of critical success factors. Sloan Manage. Rev. 25, 11–21 (1984)Google Scholar
  5. Campion M.A., Medsker G.J.: Relations between work group characteristics and effectiveness: implications for designing effective work groups. Pers. Psychol. 46(4), 823–850 (1993)CrossRefGoogle Scholar
  6. Caprihan R., Kumar S., Wadhwa S.: Fuzzy systems for control of flexible machines operating under information delays. Int. J. Prod. Res. 35(5), 1331–1348 (1997)CrossRefGoogle Scholar
  7. Chang H.-C., Chen H.-C., Fang J.-H.: Lithology determination from well logs with fuzzy associative memory neural network. IEEE Trans. Geosci. Remote Sens. 35(3), 773–780 (1997)CrossRefGoogle Scholar
  8. Cleland D.I.: Borderless project management. In: Cleland, D.I., Gareis, R. (eds) Global Project Management Handbook, pp. 1.3–1.15. McGraw-Hill Corp., New York (1994)Google Scholar
  9. Cooke-Davies T.: The real success factors on projects. Int. J. Proj. Manage. 20, 185–190 (2002)CrossRefGoogle Scholar
  10. Craiger J.P., Coovert M.D., Teachout M.S.: Predicting job performance with a fuzzy rule-based system. Int. J. Inf. Technol. Decis. Mak. 2(3), 425–444 (2003)CrossRefGoogle Scholar
  11. Fulmer R., Gibbs P., Goldsmith M.: Developing leaders: how winning companies keep on winning. Sloan Manage. Rev. 42(1), 49–59 (2000)Google Scholar
  12. Gladstein D.L.: Groups in context: A model of task group effectiveness. Adm. Sci. Q. 29, 499–517 (1984)CrossRefGoogle Scholar
  13. Goodman P.S., Devadas R., Hughson T.L.G.: Groups and productivity: analyzing the effectiveness of self-managing teams. In: Campbell, J.P., Campbell, R.J. (eds) Productivity in Organizations, pp. 295–327. Jossey-Bass, San Francisco (1988)Google Scholar
  14. Graham R.J., Englund R.L.: Creating an Environment for Successful Projects: The Quest to Manage Project Management. Jossey-Bass, Inc., San Francisco, CA (2003)Google Scholar
  15. Hackman J.R.: The design of work teams. In: Lorsch, J.W. (eds) Handbook of Organizational Behavior, pp. 315–342. Prentice-Hall Corp., Englewood Cliffs, NJ (1987)Google Scholar
  16. Hair J.F., Andersion R.E., Tatham R.L., Black W.C.: Multivariate Data Analysis. Prentice-Hall International Inc., London (1998)Google Scholar
  17. Huang W.-C., Wu C.-H.: Adaptive color image processing and recognition for varying backgrounds and illumination conditions. IEEE Trans. Ind. Electron. 45(2), 351–357 (1998)CrossRefGoogle Scholar
  18. Huang J., Negnevitsky M., Nguyen D.T.: A neural-fuzzy classifier for recognition of power quality disturbances. IEEE Trans. Power Deliv. 17(2), 609–616 (2002)CrossRefGoogle Scholar
  19. Hurley T., Kliebenstein J., Orazem P., Miller D.: Work environment, job satisfaction top employee priority lists. Natl. Hog Farmer 50(6), E16–E23 (2005)Google Scholar
  20. Jang R.J., Sun C.: Neuro-fuzzy modeling and control. Proc. IEEE 83, 378–406 (1995)CrossRefGoogle Scholar
  21. Kaplan A., Güney K., S.: Fuzzy associative memories for the computation of the bandwidth of rectangular microstrip antennas with thin and thick substrates. Int. J. Electron. 88(2), 189–195 (2001)CrossRefGoogle Scholar
  22. Katz R.L.: The effects of group longevity on project communication and performance. Adm. Sci. Q. 27, 81–104 (1982)CrossRefGoogle Scholar
  23. Keller R.T.: Technology-information processing fit and the performance of R&D project groups: a test of contingency theory. Acad. Manage. J. 37(1), 167–179 (1994)CrossRefGoogle Scholar
  24. Keller R.T.: Cross-functional project groups in research and new product development. Acad. Manage. J. 44(3), 547–556 (2001)CrossRefGoogle Scholar
  25. Kim W., Ko I.-J., Yoon J.-S., Kim G.-Y.: Inference of recommendation information on the internet using improved FAM. Futur. Gener. Comput. Syst. 20(2), 265–273 (2004)CrossRefGoogle Scholar
  26. Kosko B.: Neural Networks and Fuzzy Systems. Prentice Hall Corp., New York (1992)Google Scholar
  27. Lee T.-H., Cao Y., Lin Y.-M.: Dynamic positioning of drilling vessels with a fuzzy logic controller. Int. J. Syst. Sci. 33(12), 979–993 (2002)CrossRefGoogle Scholar
  28. Lippmann R.P.: An introduction to computing with neural nets. In: Vemuri, V. (eds) Artificial Neural Networks: Theoretical Concepts, The Computer Society, Washington, DC (1988)Google Scholar
  29. Magjuka R.J., Baldwin T.T.: Team-based employee involvement programs for continuous organizational improvement: effects of design and administration. Pers. Psychol. 44, 793–812 (1991)Google Scholar
  30. Maylor H.: Beyond the Gantt chart: project management moving on. Eur. Manage. J. 19(1), 92–100 (2001)CrossRefGoogle Scholar
  31. Morrison J., Brown C.: Project management effectiveness as a construct: a conceptual study. S. Afr. J. Bus. Manage. 35(4), 73–94 (2004)Google Scholar
  32. Moshiri S., Cameron N.: Neural network versus econometric models. J. Forecast. 19(3), 201–217 (2000)CrossRefGoogle Scholar
  33. Nutt P.C.: Implementation approaches to project planning. Acad. Manage. Rev. 8, 600–611 (1983)CrossRefGoogle Scholar
  34. Parsons M.G., Chubb A.C., Cao Y.: An assessment of fuzzy logic vessel path control. IEEE J. Ocean. Eng. 20(4), 276–284 (1995)CrossRefGoogle Scholar
  35. Pauler G.: Development of a Neuro-Fuzzy approach for treating multimodal distributions and spurious clusters. Eur. J. Oper. Res. 112(1), 207–219 (1999)CrossRefGoogle Scholar
  36. Pheng L.S., Chuan Q.T.: Environmental factors and work performance of project managers in the construction industry. Int. J. Proj. Manage. 24(1), 24–37 (2006)CrossRefGoogle Scholar
  37. Pillai A.S., Joshi A., Rao K.S.: Performance measurement of R&D projects in a multi-project, concurrent engineering environment. Int. J. Proj. Manage. 20(2), 165–177 (2002)CrossRefGoogle Scholar
  38. Pinto J.K.: Project management 2002. Res. Technol. Manage. 45(2), 22–37 (2002)Google Scholar
  39. Pinto J.K., Prescott J.E.: Variations in critical success factors over the stages in the project life cycle. J. Manage. 14(1), 5–18 (1988)CrossRefGoogle Scholar
  40. Pinto J.K., Slevin D.P.: Critical factors in successful project implementation. IEEE Trans. Eng. Manage. 34, 22–27 (1987)Google Scholar
  41. Pinto M.B., Pinto J.K., Prescott J.E.: Antecedents and consequences of project team cross-functional cooperation. Manage. Sci. 39(10), 1281–1297 (1993)CrossRefGoogle Scholar
  42. Prasad B.: Decentralized cooperation: A distributed approach to team design in a concurrent engineering organization. Team Perform. Manage. 4(4), 138–146 (1998)CrossRefGoogle Scholar
  43. Sherma A.: Central dilemmas of managing innovation in large firms. Calif. Manage. Rev. 41(3), 65–85 (1999)Google Scholar
  44. Shim D., Lee M.: Upward influence styles of R&D project leaders. IEEE Trans. Eng. Manage. 48(4), 394–413 (2001)CrossRefGoogle Scholar
  45. Sun G., Dagli C.H., Thammano A.: Dynamic neuro-fuzzy control of the nonlinear process. Comput. Ind. Eng. 33(1/2), 413–416 (1997)CrossRefGoogle Scholar
  46. Thamhain H.J.: Criteria for effective leadership in technology-oriented project teams. In: Slevin, D., Cleland, D., Pinto, J. (eds) The Frontiers of Project Management Research, pp. 259–270. Project Management Institute, Newtown Square, PA (2002)Google Scholar
  47. Thamhain H.J.: Managing innovative R&D teams. R&D Manage. 33(3), 297–311 (2003)CrossRefGoogle Scholar
  48. Thamhain H.J.: Leading technology-based project teams. Eng. Manage. J. 16(2), 35–42 (2004a)Google Scholar
  49. Thamhain H.J.: Team leadership effectiveness in technology-based project environments. Proj. Manage. J. 35(4), 35–46 (2004b)Google Scholar
  50. Thamhain H.J., Gemmill G.R.: Influence styles of project managers: some project performance correlates. Acad. Manage. J. 17(2), 216–224 (1974)CrossRefGoogle Scholar
  51. Thamhain H.J., Wilemon D.L.: Building effective teams in complex project environments. Technol. Manage. 5(2), 203–212 (1998)Google Scholar
  52. Tomkovich C., Miller C.: Riding the wind: managing new product development in the age of change. J. Prod. Innov. Manage. 17(6), 413–423 (2000)CrossRefGoogle Scholar
  53. Ushida H., Yamaguchi T.: Fuzzy-associative-memory-based knowledge construction with an application to a human-machine interface. IEEE Trans. Ind. Electron. 46(4), 851–860 (1999)CrossRefGoogle Scholar
  54. Wang L.X.: Adaptive Fuzzy Systems and Control. Prentice Hall Corp., New York (1994)Google Scholar
  55. Wanous M., Boussabaine H.A., Lewis J.: A neural network bid/no bid model: the case for contractors in Syria. Constr. Manage. Econ. 21(7), 737–744 (2003)CrossRefGoogle Scholar
  56. Wray B., Palmer A., Bejou D.: Using neural network analysis to evaluate buyer-seller relationships. Eur. J. Mark. 28(10), 32–48 (1994)CrossRefGoogle Scholar
  57. Zhao L.: Integrating technology management with business strategy. Adv. Appl. Bus. Strateg. 4(1), 11–30 (1995)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Business AdministrationNational Yunlin University of Science & TechnologyDouliu, YunlinTaiwan

Personalised recommendations