Skip to main content
Log in

Using the fuzzy associative memory (FAM) computation to explore the R&D project performance

Quality & Quantity Aims and scope Submit manuscript

Abstract

This study found out there were nonlinear relationships between the R&D project performance and its determinants—R&D project manager’s skills, quality of project environment, and teamwork effectiveness—by using the Fuzzy Associative Memory (FAM) technique in the IC design industry of Taiwan. The results showed that R&D project manager’s skills and quality of project environment had significantly inverse U-shaped effects on the R&D project performance, while teamwork effectiveness had almost monotonic positive influence upon it. Therefore, there were optimal values for R&D project manager’s skills and quality of project environment for the R&D project performance in the Taiwanese IC design companies, although they can raise teamwork effectiveness as much as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alderfer C.P.: Group and intergroup relations. In: Hackman, J.R., Suttle, J.L. (eds) Improving Life at Work: Behavioral Science Approaches to Organizational Change, pp. 227–246. Goodyear Corp., Santa Monica, CA (1977)

    Google Scholar 

  • Bahrami A., Lynch M., Dagli C.H.: Intelligent design retrieval and packaging system: application of neural networks in design and manufacturing. Int. J. Prod. Res. 33(2), 405–426 (1995)

    Article  Google Scholar 

  • Baker B.N., Murphy D.C., Fisher D.: Factors affecting project success. In: Cleland, D.I., King, W.R. (eds) Project Management Handbook, pp. 669–685. Van Nostrand Reinhold Corp., New York (1983)

    Google Scholar 

  • Boynton A.C., Zmud R.W.: An assessment of critical success factors. Sloan Manage. Rev. 25, 11–21 (1984)

    Google Scholar 

  • Campion M.A., Medsker G.J.: Relations between work group characteristics and effectiveness: implications for designing effective work groups. Pers. Psychol. 46(4), 823–850 (1993)

    Article  Google Scholar 

  • Caprihan R., Kumar S., Wadhwa S.: Fuzzy systems for control of flexible machines operating under information delays. Int. J. Prod. Res. 35(5), 1331–1348 (1997)

    Article  Google Scholar 

  • Chang H.-C., Chen H.-C., Fang J.-H.: Lithology determination from well logs with fuzzy associative memory neural network. IEEE Trans. Geosci. Remote Sens. 35(3), 773–780 (1997)

    Article  Google Scholar 

  • Cleland D.I.: Borderless project management. In: Cleland, D.I., Gareis, R. (eds) Global Project Management Handbook, pp. 1.3–1.15. McGraw-Hill Corp., New York (1994)

    Google Scholar 

  • Cooke-Davies T.: The real success factors on projects. Int. J. Proj. Manage. 20, 185–190 (2002)

    Article  Google Scholar 

  • Craiger J.P., Coovert M.D., Teachout M.S.: Predicting job performance with a fuzzy rule-based system. Int. J. Inf. Technol. Decis. Mak. 2(3), 425–444 (2003)

    Article  Google Scholar 

  • Fulmer R., Gibbs P., Goldsmith M.: Developing leaders: how winning companies keep on winning. Sloan Manage. Rev. 42(1), 49–59 (2000)

    Google Scholar 

  • Gladstein D.L.: Groups in context: A model of task group effectiveness. Adm. Sci. Q. 29, 499–517 (1984)

    Article  Google Scholar 

  • Goodman P.S., Devadas R., Hughson T.L.G.: Groups and productivity: analyzing the effectiveness of self-managing teams. In: Campbell, J.P., Campbell, R.J. (eds) Productivity in Organizations, pp. 295–327. Jossey-Bass, San Francisco (1988)

    Google Scholar 

  • Graham R.J., Englund R.L.: Creating an Environment for Successful Projects: The Quest to Manage Project Management. Jossey-Bass, Inc., San Francisco, CA (2003)

    Google Scholar 

  • Hackman J.R.: The design of work teams. In: Lorsch, J.W. (eds) Handbook of Organizational Behavior, pp. 315–342. Prentice-Hall Corp., Englewood Cliffs, NJ (1987)

    Google Scholar 

  • Hair J.F., Andersion R.E., Tatham R.L., Black W.C.: Multivariate Data Analysis. Prentice-Hall International Inc., London (1998)

    Google Scholar 

  • Huang W.-C., Wu C.-H.: Adaptive color image processing and recognition for varying backgrounds and illumination conditions. IEEE Trans. Ind. Electron. 45(2), 351–357 (1998)

    Article  Google Scholar 

  • Huang J., Negnevitsky M., Nguyen D.T.: A neural-fuzzy classifier for recognition of power quality disturbances. IEEE Trans. Power Deliv. 17(2), 609–616 (2002)

    Article  Google Scholar 

  • Hurley T., Kliebenstein J., Orazem P., Miller D.: Work environment, job satisfaction top employee priority lists. Natl. Hog Farmer 50(6), E16–E23 (2005)

    Google Scholar 

  • Jang R.J., Sun C.: Neuro-fuzzy modeling and control. Proc. IEEE 83, 378–406 (1995)

    Article  Google Scholar 

  • Kaplan A., Güney K., S.: Fuzzy associative memories for the computation of the bandwidth of rectangular microstrip antennas with thin and thick substrates. Int. J. Electron. 88(2), 189–195 (2001)

    Article  Google Scholar 

  • Katz R.L.: The effects of group longevity on project communication and performance. Adm. Sci. Q. 27, 81–104 (1982)

    Article  Google Scholar 

  • Keller R.T.: Technology-information processing fit and the performance of R&D project groups: a test of contingency theory. Acad. Manage. J. 37(1), 167–179 (1994)

    Article  Google Scholar 

  • Keller R.T.: Cross-functional project groups in research and new product development. Acad. Manage. J. 44(3), 547–556 (2001)

    Article  Google Scholar 

  • Kim W., Ko I.-J., Yoon J.-S., Kim G.-Y.: Inference of recommendation information on the internet using improved FAM. Futur. Gener. Comput. Syst. 20(2), 265–273 (2004)

    Article  Google Scholar 

  • Kosko B.: Neural Networks and Fuzzy Systems. Prentice Hall Corp., New York (1992)

    Google Scholar 

  • Lee T.-H., Cao Y., Lin Y.-M.: Dynamic positioning of drilling vessels with a fuzzy logic controller. Int. J. Syst. Sci. 33(12), 979–993 (2002)

    Article  Google Scholar 

  • Lippmann R.P.: An introduction to computing with neural nets. In: Vemuri, V. (eds) Artificial Neural Networks: Theoretical Concepts, The Computer Society, Washington, DC (1988)

    Google Scholar 

  • Magjuka R.J., Baldwin T.T.: Team-based employee involvement programs for continuous organizational improvement: effects of design and administration. Pers. Psychol. 44, 793–812 (1991)

    Google Scholar 

  • Maylor H.: Beyond the Gantt chart: project management moving on. Eur. Manage. J. 19(1), 92–100 (2001)

    Article  Google Scholar 

  • Morrison J., Brown C.: Project management effectiveness as a construct: a conceptual study. S. Afr. J. Bus. Manage. 35(4), 73–94 (2004)

    Google Scholar 

  • Moshiri S., Cameron N.: Neural network versus econometric models. J. Forecast. 19(3), 201–217 (2000)

    Article  Google Scholar 

  • Nutt P.C.: Implementation approaches to project planning. Acad. Manage. Rev. 8, 600–611 (1983)

    Article  Google Scholar 

  • Parsons M.G., Chubb A.C., Cao Y.: An assessment of fuzzy logic vessel path control. IEEE J. Ocean. Eng. 20(4), 276–284 (1995)

    Article  Google Scholar 

  • Pauler G.: Development of a Neuro-Fuzzy approach for treating multimodal distributions and spurious clusters. Eur. J. Oper. Res. 112(1), 207–219 (1999)

    Article  Google Scholar 

  • Pheng L.S., Chuan Q.T.: Environmental factors and work performance of project managers in the construction industry. Int. J. Proj. Manage. 24(1), 24–37 (2006)

    Article  Google Scholar 

  • Pillai A.S., Joshi A., Rao K.S.: Performance measurement of R&D projects in a multi-project, concurrent engineering environment. Int. J. Proj. Manage. 20(2), 165–177 (2002)

    Article  Google Scholar 

  • Pinto J.K.: Project management 2002. Res. Technol. Manage. 45(2), 22–37 (2002)

    Google Scholar 

  • Pinto J.K., Prescott J.E.: Variations in critical success factors over the stages in the project life cycle. J. Manage. 14(1), 5–18 (1988)

    Article  Google Scholar 

  • Pinto J.K., Slevin D.P.: Critical factors in successful project implementation. IEEE Trans. Eng. Manage. 34, 22–27 (1987)

    Google Scholar 

  • Pinto M.B., Pinto J.K., Prescott J.E.: Antecedents and consequences of project team cross-functional cooperation. Manage. Sci. 39(10), 1281–1297 (1993)

    Article  Google Scholar 

  • Prasad B.: Decentralized cooperation: A distributed approach to team design in a concurrent engineering organization. Team Perform. Manage. 4(4), 138–146 (1998)

    Article  Google Scholar 

  • Sherma A.: Central dilemmas of managing innovation in large firms. Calif. Manage. Rev. 41(3), 65–85 (1999)

    Google Scholar 

  • Shim D., Lee M.: Upward influence styles of R&D project leaders. IEEE Trans. Eng. Manage. 48(4), 394–413 (2001)

    Article  Google Scholar 

  • Sun G., Dagli C.H., Thammano A.: Dynamic neuro-fuzzy control of the nonlinear process. Comput. Ind. Eng. 33(1/2), 413–416 (1997)

    Article  Google Scholar 

  • Thamhain H.J.: Criteria for effective leadership in technology-oriented project teams. In: Slevin, D., Cleland, D., Pinto, J. (eds) The Frontiers of Project Management Research, pp. 259–270. Project Management Institute, Newtown Square, PA (2002)

    Google Scholar 

  • Thamhain H.J.: Managing innovative R&D teams. R&D Manage. 33(3), 297–311 (2003)

    Article  Google Scholar 

  • Thamhain H.J.: Leading technology-based project teams. Eng. Manage. J. 16(2), 35–42 (2004a)

    Google Scholar 

  • Thamhain H.J.: Team leadership effectiveness in technology-based project environments. Proj. Manage. J. 35(4), 35–46 (2004b)

    Google Scholar 

  • Thamhain H.J., Gemmill G.R.: Influence styles of project managers: some project performance correlates. Acad. Manage. J. 17(2), 216–224 (1974)

    Article  Google Scholar 

  • Thamhain H.J., Wilemon D.L.: Building effective teams in complex project environments. Technol. Manage. 5(2), 203–212 (1998)

    Google Scholar 

  • Tomkovich C., Miller C.: Riding the wind: managing new product development in the age of change. J. Prod. Innov. Manage. 17(6), 413–423 (2000)

    Article  Google Scholar 

  • Ushida H., Yamaguchi T.: Fuzzy-associative-memory-based knowledge construction with an application to a human-machine interface. IEEE Trans. Ind. Electron. 46(4), 851–860 (1999)

    Article  Google Scholar 

  • Wang L.X.: Adaptive Fuzzy Systems and Control. Prentice Hall Corp., New York (1994)

    Google Scholar 

  • Wanous M., Boussabaine H.A., Lewis J.: A neural network bid/no bid model: the case for contractors in Syria. Constr. Manage. Econ. 21(7), 737–744 (2003)

    Article  Google Scholar 

  • Wray B., Palmer A., Bejou D.: Using neural network analysis to evaluate buyer-seller relationships. Eur. J. Mark. 28(10), 32–48 (1994)

    Article  Google Scholar 

  • Zhao L.: Integrating technology management with business strategy. Adv. Appl. Bus. Strateg. 4(1), 11–30 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Shan Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YS., Chang, KC. Using the fuzzy associative memory (FAM) computation to explore the R&D project performance. Qual Quant 44, 537–549 (2010). https://doi.org/10.1007/s11135-008-9210-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11135-008-9210-y

Keywords

Navigation