Quality and Quantity

, Volume 39, Issue 4, pp 467–481 | Cite as

On the Confidence Interval for the Binomial Parameter

  • Miguel A. García-Pérez


The use of confidence intervals (CIs) is strongly recommended in the 5th edition of the Publication Manual of the American Psychological Association. The CI for the binomial parameter π is customarily obtained using Wald method, which uses the normal approximation to the binomial distribution and the estimated standard error. Wald CI has been shown to be unsatisfactory and alternative CIs have been proposed, but this literature appears to have gone unnoticed to psychologists. Only one of these alternatives is dual with the conventional Score test for π, thus meeting the requirements stated in the Publication Manual. Three examples illustrate the appropriate choice of a CI for π in the context of growing concern with good statistical practices.


confidence interval binomial parameter wald test score test exact test 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agresti, A., Caffo, B. 2000Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failuresThe American Statistician54280288Google Scholar
  2. Agresti, A., Coull, B.A. 1998Approximate is better than “exact” for interval estimation of binomial proportionsThe American Statistician52119126Google Scholar
  3. American Psychological Association.2001Publication Manual of the American Psychological AssociationAmerican Psychological AssociationWashington, DCGoogle Scholar
  4. Bex, P.J., Metha, A.B., Makous, W. 1998Psychophysical evidence for a functional hierarchy of motion processing mechanismsJournal of the Optical Society of America A15769776Google Scholar
  5. Blyth, C.R., Still, H.A. 1983Binomial confidence intervalsJournal of the American Statistical Association78108116Google Scholar
  6. Brown, L.D., Cai, T.T., DasGupta, A. 2001Interval estimation of a binomial proportion [with discussion]Statistical Science16101133Google Scholar
  7. Brown, L.D., Cai, T.T., DasGupta, A. 2003Interval estimation in exponential familiesStatistica Sinica131949Google Scholar
  8. Casella, G. 2001Comment [in discussion of Brown et al., 2001]Statistical Science,16120122Google Scholar
  9. Chow, S.L. 1998Précis of Statistical Significance: Rationale, Validity, and UtilityBehavioral and Brain Sciences21169239CrossRefPubMedGoogle Scholar
  10. Clopper, C.J., Pearson, E.S. 1934The use of confidence or fiducial limits illustrated in the case of the binomialBiometrika26404413Google Scholar
  11. Clunies-Ross, C.W. 1958Interval estimation for the parameter of a binomial distributionBiometrika45275279Google Scholar
  12. Cortina, J.M., Dunlap, W.P. 1997On the logic and purpose of significance testingPsychological Methods2161172CrossRefGoogle Scholar
  13. Cox, C.P. 1987A Handbook of Introductory Statistical MethodsWileyNew YorkGoogle Scholar
  14. Crow, E.L. 1956Confidence intervals for a proportionBiometrika,43423435Google Scholar
  15. Dixon, P. 1998Why scientists value p valuesPsychonomic Bulletin and Review,5390396Google Scholar
  16. Fagot, J., Wasserman, E.A., Young, M.E. 2001Discriminating the relation between relations: The role of entropy in abstract conceptualization by baboons (Papio papio) and humans (Homo sapiens)Journal of Experimental Psychology: Animal Behavior Processes27316328CrossRefGoogle Scholar
  17. Finch, S., Cumming, G., Thomason, N. 2001Reporting of statistical practices in the Journal of Applied Psychology : Little evidence of reformJournal of Applied Psychology: Educational and Psychological Measurement61181210CrossRefGoogle Scholar
  18. Freund, J.E. 1988Modern Elementary Statistics7Prentice-HallEnglewood Cliffs, NJGoogle Scholar
  19. Frick, R.W. 1996The appropriate use of null hypothesis testingPsychological Methods,1379390Google Scholar
  20. García-Pérez, M.A. 1999MPROB: Computation of multinomial probabilitiesBehavior Research Methods, Instruments, and Computers31701705Google Scholar
  21. García-Pérez, M.A. 2000Exact finite-sample significance and confidence regions for goodness-of-fit statistics in one-way multinomialsBritish Journal of Mathematical and Statistical Psychology53193207CrossRefPubMedGoogle Scholar
  22. Ghosh, B.K. 1979A comparison of some approximate confidence intervals for the binomial parameterJournal of the American Statistical Association74894900Google Scholar
  23. Harlow, L.L.Mulaik, S.A.Steiger, J.H. eds. 1997What if There Were No Significance Tests?ErlbaumMahwah, NJGoogle Scholar
  24. Hays, W.L. 1973Statistics for the Social Sciences2Holt, Rinehart and WinstonNew YorkGoogle Scholar
  25. Howard, G.S., Maxwell, S.E., Fleming, K.J. 2000The proof of the pudding: An illustration of the relative strengths of null hypothesis, meta-analysis, and Bayesian analysisPsychological Methods5315332CrossRefPubMedGoogle Scholar
  26. Katz, L. 1953Confidence intervals for the number showing a certain characteristic in a population when sampling is without replacementJournal of the American Statistical Association48256261Google Scholar
  27. Larsen, R.J., Marx, M.L. 1981An Introduction to Mathematical Statistics and Its ApplicationsPrentice-HallEnglewood Cliffs, NJGoogle Scholar
  28. Levin, J.R. 1998To test or not to test H0? [Review of the book What if There Were No Significance Tests?]Educational and Psychological Measurement58313333Google Scholar
  29. Marascuilo, L.A 1971Statistical Methods for Behavioral Science ResearchMcGraw-HillNew YorkGoogle Scholar
  30. Markus, K.A. 2001The converse inequality argument against tests of statistical significancePsychological Methods6147160CrossRefPubMedGoogle Scholar
  31. Mendenhall, W., Ramey, M. 1973Statistics for PsychologyDuxbury PressNorth Scituate, MAGoogle Scholar
  32. Newcombe, R.G 1998Two-sided confidence intervals for the single proportion: Comparison of seven methodsStatistics in Medicine17857872CrossRefPubMedGoogle Scholar
  33. Nickerson, R.S 1999Statistical significance testing: Useful tool or bone-headedly misguided procedure? [Review of the book What if There Were No Significance Tests? ]Journal of Mathematical Psychology43455471CrossRefGoogle Scholar
  34. Nickerson, R.S 2000Null hypothesis significance testing: A review of an old and continuing controversyPsychological Methods5241301CrossRefPubMedGoogle Scholar
  35. Numerical Algorithms Group.1995NAG Fortran Library Manual, Mark 17Numerical Algorithms GroupOxfordGoogle Scholar
  36. Poitevineau, J., Lecoutre, B. 2001Interpretation of significance levels by psychological researchers: The .05 cliff effect may be overstatedPsychonomic Bulletin and Review8847850PubMedGoogle Scholar
  37. Reiczigel, J 2003Confidence intervals for the binomial parameter: Some new considerationsStatistics in Medicine22611621CrossRefPubMedGoogle Scholar
  38. Snedecor, G.W., Cochran, W.G. 1989Statistical Methods8Iowa State University PressAmes, IAGoogle Scholar
  39. Stevens, W.L 1950Fiducial limits of the parameter of a discontinuous distributionBiometrika37117129PubMedGoogle Scholar
  40. Thompson, B 1998Review of What if There Were No Significance Tests? Educational and Psychological Measurement58334346Google Scholar
  41. Thompson, B 1999If statistical significance tests are broken/misused, what practices should supplement or replace them?Theory and Psychology9165181Google Scholar
  42. Vacha-HaaseT., , Nilsson, J.E., Reetz, D.R., Lance, T.S., Thompson, B. 2000Reporting practices and APA editorial policies regarding statistical significance and effect sizeTheory and Psychology10413425Google Scholar
  43. Wainer, H. 1999One cheer for null hypothesis significance testingPsychological Methods4212213CrossRefGoogle Scholar
  44. Welkowitz, J., Ewen, R.B., Cohen, J. 1976Introductory Statistics for the Behavioral Sciences2Academic PressNew YorkGoogle Scholar
  45. Wendell, J.P., Schmee, J. 2001Likelihood confidence intervals for proportions in finite populationsThe American Statistician555561CrossRefGoogle Scholar
  46. Wilcox, R.R. 2002Comparing the variances of two independent groupsBritish Journal of Mathematical and Statistical Psychology55169175CrossRefPubMedGoogle Scholar
  47. Wilkinson, L. The APA Task Force on Statistical Inference.1999Statistical methods in psychology journals: Guidelines and explanationsAmerican Psychologist54594604CrossRefGoogle Scholar
  48. Wilson, E.B. 1927Probable inference, the law of succession, and statistical inferenceJournal of the American Statistical Association22209212Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Departamento de Metodología, Facultad de PsicologíaUniversidad ComplutenseMadridSpain

Personalised recommendations