On the rate of convergence to equilibrium for reflected Brownian motion

Article
  • 11 Downloads

Abstract

This paper discusses the rate of convergence to equilibrium for one-dimensional reflected Brownian motion with negative drift and lower reflecting boundary at 0. In contrast to prior work on this problem, we focus on studying the rate of convergence for the entire distribution through the total variation norm, rather than just moments of the distribution. In addition, we obtain computable bounds on the total variation distance to equilibrium that can be used to assess the quality of the steady state for queues as an approximation to finite horizon expectations.

Keywords

Reflected Brownian motion Queueing theory Total variation distance Rate of convergence to equilibrium Large deviations Steady-state simulation Diffusion processes 

Mathematics Subject Classification

60F05 60F10 60G05 60J60 60K25 

Notes

Acknowledgements

This paper honors the fundamental contributions of Ward Whitt to the applied probability community, particularly to queueing theory, weak convergence, and diffusion approximations. The authors would also like to thank Vadim Linetsky for a helpful personal communication, regarding how to directly obtain the spectral representation for RBM, and the referee for a careful reading of this paper and for related comments on improving the exposition. Rob J. Wang is grateful to have been supported by an Arvanitidis Stanford Graduate Fellowship in memory of William K. Linvill, the Thomas Ford Fellowship, as well as NSERC Postgraduate Scholarships.

References

  1. 1.
    Abate, J., Whitt, W.: Transient behavior of regulated Brownian motion, I: starting at the origin. Adv. Appl. Probab. 19(3), 560–598 (1987a)CrossRefGoogle Scholar
  2. 2.
    Abate, J., Whitt, W.: Transient behavior of regulated Brownian motion, II: non-zero initial conditions. Adv. Appl. Probab. 19(3), 599–631 (1987b)CrossRefGoogle Scholar
  3. 3.
    Abate, J., Whitt, W.: Transient behavior of the M/M/1 queue: starting at the origin. Queueing Syst. 2, 41–65 (1987c)CrossRefGoogle Scholar
  4. 4.
    Abate, J., Whitt, W.: Transient behavior of the M/G/1 workload process. Oper. Res. 42(4), 750–764 (1994)CrossRefGoogle Scholar
  5. 5.
    Artin, E.: The Gamma Function. Holt, Rinchart, and Winston Inc, New York (1964)Google Scholar
  6. 6.
    Asmussen, S.: Queueing simulation in heavy traffic. Math. Oper. Res. 17(1), 84–111 (1992)CrossRefGoogle Scholar
  7. 7.
    Asmussen, S., Glynn, P.W., Thorisson, H.: Stationarity detection in the initial transient problem. ACM Trans. Model. Comput. Simul. 2(2), 130–157 (1992)CrossRefGoogle Scholar
  8. 8.
    Borovkov, A.A.: Some limit theorems in the theory of mass service II. Theor. Probab. Appl. 10, 375–400 (1965)CrossRefGoogle Scholar
  9. 9.
    Chung, K.L.: A Course in Probability Theory, 3rd edn. Academic Press, San Diego (2001)Google Scholar
  10. 10.
    Cohen, J.W.: The Single Server Queue, 2nd. Revised edn. Elsevier, Amsterdam (1982)Google Scholar
  11. 11.
    Diaconis, P.: The Markov chain Monte Carlo revolution. Bull. Am. Math. Soc. 46(2), 179–1205 (2009)CrossRefGoogle Scholar
  12. 12.
    Diaconis, P., Stroock, D.: Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Probab. 1(1), 36–61 (1991)CrossRefGoogle Scholar
  13. 13.
    Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence, 2nd edn. Wiley, New York (2005)Google Scholar
  14. 14.
    Folland, G.B.: Real Analysis: Modern Techniques and Their Applications, 2nd edn. Wiley, New York (1999)Google Scholar
  15. 15.
    Glynn, P.W., Meyn, S.P.: A Liapounov bound for solutions of the Poisson equation. Ann. Probab. 2(2), 916–931 (1996)Google Scholar
  16. 16.
    Glynn, P.W., Wang, R.J.: On the rate of convergence to equilibrium for two-sided reflected Brownian motion and for the Ornstein–Uhlenbeck process, pp. 1–10 (2018) (Submitted for Publication)Google Scholar
  17. 17.
    Grassmann, W.K.: Factors affecting warm-up periods in discrete event simulation. Simulation 90(1), 11–23 (2014)CrossRefGoogle Scholar
  18. 18.
    Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes, 3rd edn. Oxford University Press, Oxford (2001)Google Scholar
  19. 19.
    Harrison, J.M.: Brownian Models of Performance and Control. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  20. 20.
    Iglehart, D.L., Whitt, W.: Multiple channel queues in heavy traffic. I. Adv. Appl. Probab. 2(1), 150–177 (1970)CrossRefGoogle Scholar
  21. 21.
    Kingman, J.F.C.: The single server queue in heavy traffic. Proc. Camb. Philos. Soc. 57, 902–904 (1961)CrossRefGoogle Scholar
  22. 22.
    Linetsky, V.: On the transition densities for reflected diffusions. Adv. Appl. Probab. 37, 435–460 (2005)CrossRefGoogle Scholar
  23. 23.
    Meyn, S., Tweedie, R.L.: Markov Chains and Stochastic Stability, 2nd edn. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  24. 24.
    Meyn, S.P., Tweedie, R.L.: Stability of Markovian processes III: Foster–Lyapunov criteria for continuous-time processes. Adv. Appl. Probab. 25(3), 518–548 (1993)CrossRefGoogle Scholar
  25. 25.
    Roberts, G.O., Rosenthal, J.S.: General state space Markov chains and MCMC algorithms. Probab. Surv. 1, 20–71 (2004)CrossRefGoogle Scholar
  26. 26.
    Thorisson, H.: Coupling, Stationarity, and Regeneration. Springer, New York (2000)CrossRefGoogle Scholar
  27. 27.
    Wang, R.J., Glynn, P.W.: Measuring the initial transient: reflected Brownian motion. In: Tolk, A., Diallo, S.Y., Ryzhov, I.O., Yilmaz, L., Buckley, S., Miller, J.A. (eds.) Proceedings of the 2014 Winter Simulation Conference, pp. 652–661 (2014)Google Scholar
  28. 28.
    Wang, R.J., Glynn, P.W.: On the marginal standard error rule and the testing of initial transient deletion methods. ACM Trans. Model. Comput. Simul. 27(1), 1–30 (2016)Google Scholar
  29. 29.
    Whitt, W.: Planning queueing simulations. Manag. Sci. 35(11), 1341–1366 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Management Science and EngineeringStanford UniversityStanfordUSA
  2. 2.AirbnbSan FranciscoUSA

Personalised recommendations