Abstract
We introduce the first class of perfect sampling algorithms for the steady-state distribution of multi-server queues with general interarrival time and service time distributions. Our algorithm is built on the classical dominated coupling from the past protocol. In particular, we use a coupled multi-server vacation system as the upper bound process and develop an algorithm to simulate the vacation system backward in time from stationarity at time zero. The algorithm has finite expected termination time with mild moment assumptions on the interarrival time and service time distributions.
Keywords
Perfect sampling FCFS multi-server queue Dominated coupling from the past Random walksMathematics Subject Classification
60K25References
- 1.Asmussen, S.: Applied Probability and Queues, 2nd edn. Springer, Berlin (2003)Google Scholar
- 2.Asmussen, S., Glynn, P., Thorisson, H.: Stationarity detection in the initial transient problem. ACM Trans. Model. Comput. Simul. (TOMACS) 2(2), 130–157 (1992)CrossRefGoogle Scholar
- 3.Blanchet, J., Chen, X.: Steady-state simulation of reflected Brownian motion and related stochastic networks (2013). arXiv preprint arXiv:1202.2062
- 4.Blanchet, J., Dong, J.: Perfect sampling for infinite server and loss systems. Adv. Appl. Probab. 47(3), 761–786 (2014). ForthcomingCrossRefGoogle Scholar
- 5.Blanchet, J., Sigman, K.: On exact sampling of stochastic perpetuities. J. Appl. Probab. 48(A), 165–182 (2011)CrossRefGoogle Scholar
- 6.Blanchet, J., Wallwater, A.: Exact sampling for the stationary and time-reversed queues. ACM Trans. Model. Comput. Simul. (TOMACS) 25(4), 26:1–26:27 (2015)CrossRefGoogle Scholar
- 7.Chen, H., Yao, D.: Fundamentals of Queueing Networks: Performance, Asymptotics and Optimization, vol. 46. Springer, Berlin (2013)Google Scholar
- 8.Connor, S., Kendall, W.: Perfect simulation for a class of positive recurrent Markov chains. Ann. Appl. Probab. 17(3), 781–808 (2007)CrossRefGoogle Scholar
- 9.Connor, S., Kendall, W.: Perfect simulation of M/G/c queues. Adv. Appl. Probab. 47(4), 1039–1063 (2015)CrossRefGoogle Scholar
- 10.Corcoran, J., Tweedie, R.: Perfect sampling of ergodic Harris chains. Ann. Appl. Probab. 11(2), 438–451 (2001)CrossRefGoogle Scholar
- 11.Ensor, K., Glynn, P.: Simulating the maximum of a random walk. J. Stat. Plan. Inference 85, 127–135 (2000)CrossRefGoogle Scholar
- 12.Foss, S.: On the approximation of multichannel service systems. Sibirsk. Mat. Zh. 21(6), 132–140 (1980)Google Scholar
- 13.Foss, S., Chernova, N.: On optimality of the FCFS discipline in multiserver queueing systems and networks. Sib. Math. J. 42(2), 372–385 (2001)CrossRefGoogle Scholar
- 14.Foss, S., Konstantopoulos, T.: Lyapunov function methods. Lecture Notes. http://www2.math.uu.se/~takis/L/StabLDC06/notes/SS_LYAPUNOV.pdf (2006)
- 15.Foss, S., Tweedie, R.: Perfect simulation and backward coupling. Stoch. Models 14, 187–203 (1998)CrossRefGoogle Scholar
- 16.Garmarnik, D., Goldberg, D.: Steady-state GI/GI/n queue in the Halfin–Whitt regime. Ann. Appl. Probab. 23, 2382–2419 (2013)CrossRefGoogle Scholar
- 17.Hillier, F.S., Lo, F.D.: Tables for multiple-server queueing systems involving Erlang distributions. Tech. Rep. 31, Department of Operations Research, Stanford University (1971)Google Scholar
- 18.Kelly, F.: Reversibility and Stochastic Networks, vol. 40. Wiley, Chichester (1979)Google Scholar
- 19.Kendall, W.: Perfect simulation for the area-interaction point process. In: Accardi, L., Heyde, C.C. (eds.) Probability towards 2000, pp. 218–234. Springer, New York (1998)CrossRefGoogle Scholar
- 20.Kendall, W.: Geometric ergodicity and perfect simulation. Electron. Comm. Probab. 9, 140–151 (2004)CrossRefGoogle Scholar
- 21.Kendall, W., Møller, J.: Perfect simulation using dominating processes on ordered spaces, with application to locally stable point processes. Adv. Appl. Probab. 32(3), 844–865 (2000)CrossRefGoogle Scholar
- 22.Liu, Z., Nain, P., Towsley, D.: Sample path methods in the control of queues. Queueing Syst. 21(1–2), 293–335 (1995)CrossRefGoogle Scholar
- 23.Propp, J., Wilson, D.: Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Struct. Alg. 9, 223–252 (1996)CrossRefGoogle Scholar
- 24.Rubinstein, R., Kroese, D.: Simulation and the Monte Carlo method, vol. 707. Wiley, New York (2011)Google Scholar
- 25.Sigman, K.: Exact simulation of the stationary distribution of the FIFO M/G/c queue. J. Appl. Probab. 48A, 209–216 (2011)CrossRefGoogle Scholar
- 26.Sigman, K.: Exact sampling of the stationary distribution of the FIFO M/G/c queue: the general case for \(\rho <c\). Queueing Syst. 70, 37–43 (2012)CrossRefGoogle Scholar
- 27.Wolff, R.: An upper bound for multi-channel queues. J. Appl. Probab. 14, 884–888 (1977)CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2018