Advertisement

Queueing Systems

, Volume 70, Issue 2, pp 145–164 | Cite as

Invariance of fluid limits for the shortest remaining processing time and shortest job first policies

  • H. Christian Gromoll
  • Martin Keutel
Article

Abstract

We consider a single-server queue with renewal arrivals and i.i.d. service times, in which the server employs either the preemptive Shortest Remaining Processing Time (SRPT) policy, or its non-preemptive variant, Shortest Job First (SJF). We show that for given stochastic primitives (initial condition, arrival and service processes), the model has the same fluid limit under either policy. In particular, we conclude that the well-known queue length optimality of preemptive SRPT is also achieved, asymptotically on fluid scale, by the simpler-to-implement SJF policy. We also conclude that on fluid scale, SJF and SRPT achieve the same performance with respect to state-dependent response times.

Keywords

Queueing Queue length Shortest remaining processing time Shortest job first Shortest job next Fluid limit 

Mathematics Subject Classification (2000)

60K25 60F17 60G57 68M20 90B22 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Addie, R., McNickle, D.: Comparing different approaches to the use of DiffServ in the internet. In: IEEE TENCON 2005, pp. 1–6. IEEE, New York (2005) CrossRefGoogle Scholar
  2. 2.
    Bansal, N., Harchol-Balter, M.: Analysis of SRPT scheduling: investigating unfairness. In: Proceedings of ACM Sigmetrics 2001, New York, 2001, pp. 279–290. ACM Press, New York (2001) CrossRefGoogle Scholar
  3. 3.
    Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968) Google Scholar
  4. 4.
    Down, D.G., Gromoll, H.C., Puha, A.L.: Fluid limits for shortest remaining processing time queues. Math. Oper. Res. 34, 880–911 (2009) CrossRefGoogle Scholar
  5. 5.
    Down, D.G., Gromoll, H.C., Puha, A.L.: State-dependent response times via fluid limits in shortest remaining processing time queues. SIGMETRICS Perform. Eval. Rev. 37(2), 75–76 (2009) CrossRefGoogle Scholar
  6. 6.
    Gromoll, H.C., Kruk, Ł., Puha, A.L.: Diffusion limits for shortest remaining processing time queues. Stoch. Syst. 1, 1–16 (2011). arXiv:1005.1035v1 [math.PR] CrossRefGoogle Scholar
  7. 7.
    Harchol-Balter, M., Sigman, K., Wierman, A.: Asymptotic convergence of scheduling policies with respect to slowdown. Perform. Eval. 49, 241–256 (2002) CrossRefGoogle Scholar
  8. 8.
    Nuyens, M., Zwart, B.: A large-deviations analysis of the GI/GI/1 SRPT queue. Queueing Syst. 54(2), 85–97 (2006) CrossRefGoogle Scholar
  9. 9.
    Prokhorov, Y.V.: Convergence of random processes and limit theorems in probability theory. Theory Probab. Appl. 1, 157–214 (1956) CrossRefGoogle Scholar
  10. 10.
    Schrage, L.: A proof of the optimality of the shortest remaining processing time discipline. Oper. Res. 16(3), 687–690 (1968) CrossRefGoogle Scholar
  11. 11.
    Schreiber, F.: Properties and applications of the optimal queueing strategy SRPT—a survey. AEÜ, Arch. Elektron. Übertrag.tech. 47, 372–378 (1993) Google Scholar
  12. 12.
    Smith, W.: Various optimizers for single-stage production. Nav. Res. Logist. Q. 3, 59–66 (1956) CrossRefGoogle Scholar
  13. 13.
    Wierman, A.: Nuyens, M. Scheduling despite inexact job-size information. In: SIGMETRICS’08: Proceedings of the 2008 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, New York, NY, USA, 2008, pp. 25–36. ACM, New York (2008) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations