Advertisement

Queueing Systems

, Volume 68, Issue 3–4, pp 333–338 | Cite as

On the greedy walk problem

  • Charles Bordenave
  • Sergey Foss
  • Günter Last
Article

Abstract

This note introduces a greedy walk on Poisson and Binomial processes, which is a close relative to the well-known greedy server model. Some open problems are presented.

Keywords

Greedy algorithm Travelling salesperson problem Point processes 

Mathematics Subject Classification (2000)

60G55 60K37 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beardwood, J., Halton, J.H., Hammersley, J.M.: The shortest path through many points. Proc. Camb. Philos. Soc. 55, 299–327 (1959) CrossRefGoogle Scholar
  2. 2.
    Bentley, J.L., Saxe, J.B.: An analysis of two heuristics for the Euclidean traveling salesman problem. In: Proc. 18th Allerton Conference on Communication, Control and Computing, vol. 6, pp. 41–49. University of Illinois, Urbana-Champaign (1980) Google Scholar
  3. 3.
    Bertsimas, D.J., Garrett van Ryzin, G.: A stochastic and dynamic vehicle routing problem in the Euclidean plane. Oper. Res. 39, 601–615 (1991) CrossRefGoogle Scholar
  4. 4.
    Coffman, E.G. Jr., Gilbert, E.N.: Polling and greedy servers on a line. Queueing Syst. 2, 115–145 (1987) CrossRefGoogle Scholar
  5. 5.
    Foss, S., Last, G.: Stability of polling systems with exhaustive service policies and state dependent routing. Ann. Appl. Probab. 6, 116–137 (1996) CrossRefGoogle Scholar
  6. 6.
    Foss, S., Last, G.: On the stability of greedy polling systems with general service policies. Probab. Eng. Inf. Sci. 12, 49–68 (1998) CrossRefGoogle Scholar
  7. 7.
    Rojas-Nandayapa, L., Foss, S., Kroese, D.: Stability and performance of greedy server systems: A review and open problems. Queueing Syst., this volume (2011) Google Scholar
  8. 8.
    Rosenkrantz, D., Stearns, R., Lewis, P.: An analysis of several heuristics for the traveling salesman problem. SIAM J. Comput. 6(5), 563–581 (1977) CrossRefGoogle Scholar
  9. 9.
    Schassberger, R.: Stability of polling networks with state-depending server routing. Probab. Eng. Inf. Sci. 9, 539–550 (1995) CrossRefGoogle Scholar
  10. 10.
    Steele, J.M.: Cost of sequential connection for points in space. Oper. Res. Lett. 8(3), 137–142 (1989) CrossRefGoogle Scholar
  11. 11.
    Steele, J.M.: Probability Theory and Combinatorial Optimization. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 69. SIAM, Philadelphia (1997) Google Scholar
  12. 12.
    Yukich, J.: Probability Theory of Classical Euclidean Optimization Problems. Lecture Notes in Mathematics, vol. 1675. Springer, Berlin (1998) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institut de Mathématiques de ToulouseCNRS & Université de ToulouseToulouseFrance
  2. 2.School of Mathematics and Computer SciencesHeriot-Watt UniversityEdinburghScotland, UK
  3. 3.Institute of MathematicsNovosibirskRussia
  4. 4.Institut für StochastikKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations