Queueing Systems

, 63:195 | Cite as

Coding and control for communication networks

  • Wei Chen
  • Danail Traskov
  • Michael Heindlmaier
  • Muriel Médard
  • Sean Meyn
  • Asuman Ozdaglar


The purpose of this paper is to survey techniques for constructing effective policies for controlling complex networks, and to extend these techniques to capture special features of wireless communication networks under different networking scenarios. Among the key questions addressed are:
  1. (i)

    The relationship between static network equilibria, and dynamic network control.

  2. (ii)

    The effect of coding on control and delay through rate regions.

  3. (iii)

    Routing, scheduling, and admission control.

Through several examples, ranging from multiple-access systems to network coded multicast, we demonstrate that the rate region for a coded communication network may be approximated by a simple polyhedral subset of a Euclidean space. The polyhedral structure of the rate region, determined by the coding, enables a powerful workload relaxation method that is used for addressing complexity—the relaxation technique provides approximations of a highly complex network by a far simpler one.

These approximations are the basis of a specific formulation of an h-MaxWeight policy for network routing. Simulations show a 50% improvement in average delay performance as compared to methods used in current practice.

Routing Scheduling Networks Coding Information theory Approximate dynamic programming 

Mathematics Subject Classification (2000)

68M20 68M10 90B18 90B15 94A05 


  1. 1.
    Ahlswede, R., Cai, N., Li, S.-Y.R., Yeung, R.W.: Network information flow. IEEE Trans. Inf. Theory 46, 1024–1016 (2000) CrossRefGoogle Scholar
  2. 2.
    Bertsekas, D.P.: Dynamic Programming and Optimal Control, 3rd edn. Athena Scientific, Nashua (2007) Google Scholar
  3. 3.
    Bertsimas, D., Niño-Mora, J.: Restless bandits, linear programming relaxations, and a primal-dual index heuristic. Oper. Res. 48(1), 80–90 (2000) CrossRefGoogle Scholar
  4. 4.
    Bramson, M., Williams, R.J.: Two workload properties for Brownian networks. Queueing Syst. Theory Appl. 45(3), 191–221 (2003) CrossRefGoogle Scholar
  5. 5.
    Brockmeyer, E., Halstrøm, H.L., Jensen, A.: The Life and Works of A.K. Erlang. The Copenhagen Telephone Company, Copenhagen (1948) Google Scholar
  6. 6.
    Bui, L., Srikant, R., Stolyar, A.: Novel architectures and algorithms for delay reduction in back-pressure scheduling and routing. arXiv:0901.1312. A short version of this paper is accepted to the INFOCOM 2009 Mini-Conference, Jan 2009
  7. 7.
    Candogan, U.O., Menache, I., Ozdaglar, A., Parrilo, P.A.: Competitive scheduling in wireless collision channels with correlated channel state. In: Proceedings of the International Conference on Game Theory for Networks (GameNets), 13–15 May 2009 Google Scholar
  8. 8.
    Chen, W., Huang, D., Kulkarni, A., Unnikrishnan, J., Zhu, Q., Mehta, P., Meyn, S., Wierman, A.: Approximate dynamic programming using fluid and diffusion approximations with applications to power management. In: Proceedings of the 48th IEEE Conference on Decision and Control, 16–18 December 2009 (to appear) Google Scholar
  9. 9.
    Coffman, E.G. Jr., Mitrani, I.: A characterization of waiting times realizable by single server queues. Oper. Res. 28, 810–821 (1980) CrossRefGoogle Scholar
  10. 10.
    Cover, T.M.: Comments on broadcast channels. IEEE Trans. Inf. Theory 44(6), 2524–2530 (1998) CrossRefGoogle Scholar
  11. 11.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991) CrossRefGoogle Scholar
  12. 12.
    Ephremides, A., Hajek, B.E.: Information theory and communication networks: an unconsummated union. IEEE Trans. Inf. Theory 44(6), 2416–2434 (1998) CrossRefGoogle Scholar
  13. 13.
    Erlang, A.K.: Solution of some problems in the theory of probabilities of significance in automatic telephone exchanges. In: Brockmeyer, E., Halstrøm, H.L., Jensen, A. (eds.) The Life and Works of A.K. Erlang, p. 189. The Copenhagen Telephone Company, Copenhagen (1948). Originally published in Danish in Elektrotkeknikeren, vol. 13 (1917) Google Scholar
  14. 14.
    Erlang, A.K.: The theory of probabilities and telephone conversations. In: Brockmeyer, E., Halstrøm, H.L., Jensen, A. (eds.) The Life and Works of A.K. Erlang, p. 131. The Copenhagen Telephone Company, Copenhagen (1948). Originally published in Danish in Nyt Tidsskrift for Matematik B (1909) Google Scholar
  15. 15.
    Eryilmaz, A., Ozdaglar, A., Modiano, E.: Polynomial complexity algorithms for full utilization of multihop wireless networks. In: Proceedings of IEEE INFOCOM (2007) Google Scholar
  16. 16.
    Georgiadis, L., Neely, M., Tassiulas, L.: Resource Allocation and Cross Layer Control in Wireless Networks. Foundations and Trends in Networking, vol. 1(1). Now Publishers, Hanover (2006) Google Scholar
  17. 17.
    Gupta, G.R., Shroff, N.B.: Delay analysis for multi-hop wireless networks. In: Proceedings of IEEE Infocom, Rio de Janeiro, Brazil (2009). Presentation given at ITA-Workshop 2009, UCSD Google Scholar
  18. 18.
    Henderson, S.G., Meyn, S.P., Tadić, V.B.: Performance evaluation and policy selection in multiclass networks. Discrete Event Dyn. Syst. Theory Appl. 13(1–2), 149–189 (2003). Special issue on learning, optimization and decision making (invited) CrossRefGoogle Scholar
  19. 19.
    Ho, T., Médard, M., Effros, M., Karger, D.: On randomized network coding. In: Proc. 41st Allerton Annual Conference on Communication, Control and Computing, October 2003 Google Scholar
  20. 20.
    Ho, T., Medard, M., Koetter, R., Karger, D.R., Effros, M., Shi, J., Leong, B.: A random linear network coding approach to multicast. IEEE Trans. Inf. Theory 52(10), 4413–4430 (2006) CrossRefGoogle Scholar
  21. 21.
    Jaggi, S., Sanders, P., Chou, P.A., Effros, M., Egner, S., Jain, K., Tolhuizen, L.M.G.M.: Polynomial time algorithms for multicast network code construction. IEEE Trans. Inf. Theory 51(6), 1973–1982 (2005) CrossRefGoogle Scholar
  22. 22.
    Johannsen, F.W.: Waiting times and number of calls. P.O. Electr. Eng. J. (1907) Google Scholar
  23. 23.
    Kelly, F.P., Laws, C.N.: Dynamic routing in open queueing networks: Brownian models, cut constraints and resource pooling. Queueing Syst. Theory Appl. 13, 47–86 (1993) CrossRefGoogle Scholar
  24. 24.
    Kleinrock, L.: Queueing Systems. Vol. 1: Theory. Wiley, New York (1975) Google Scholar
  25. 25.
    Kumar, S., Kumar, P.R.: Performance bounds for queueing networks and scheduling policies. IEEE Trans. Automat. Contr. AC-39, 1600–1611 (1994) CrossRefGoogle Scholar
  26. 26.
    Kumar, P.R., Meyn, S.P.: Duality and linear programs for stability and performance analysis queueing networks and scheduling policies. IEEE Trans. Automat. Contr. 41(1), 4–17 (1996) CrossRefGoogle Scholar
  27. 27.
    Laws, N.: Dynamic routing in queueing networks. Ph.D. Thesis, Cambridge University, Cambridge, UK (1990) Google Scholar
  28. 28.
    Lippman, S.: Applying a new device in the optimization of exponential queueing systems. Oper. Res. 23, 687–710 (1975) CrossRefGoogle Scholar
  29. 29.
    Meyn, S.: Stability and asymptotic optimality of generalized MaxWeight policies. SIAM J. Control Optim. 47(6), 3259–3294 (2009) CrossRefGoogle Scholar
  30. 30.
    Meyn, S.P.: The policy iteration algorithm for average reward Markov decision processes with general state space. IEEE Trans. Automat. Contr. 42(12), 1663–1680 (1997) CrossRefGoogle Scholar
  31. 31.
    Meyn, S.P.: Stability and optimization of queueing networks and their fluid models. In: Mathematics of Stochastic Manufacturing Systems, Williamsburg, VA, 1996, pp. 175–199. Am. Math. Soc., Providence (1997) Google Scholar
  32. 32.
    Meyn, S.P.: Sequencing and routing in multiclass queueing networks. Part II: Workload relaxations. SIAM J. Control Optim. 42(1), 178–217 (2003) CrossRefGoogle Scholar
  33. 33.
    Meyn, S.P.: Dynamic safety-stocks for asymptotic optimality in stochastic networks. Queueing Syst. Theory Appl. 50, 255–297 (2005) CrossRefGoogle Scholar
  34. 34.
    Meyn, S.P.: Control Techniques for Complex Networks. Cambridge University Press, Cambridge (2007) Google Scholar
  35. 35.
    Modiano, E., Shah, D., Zussman, G.: Maximizing throughput in wireless networks via gossiping. In: Proceedings of ACM Sigmetrics/IFIP Performance (2006) Google Scholar
  36. 36.
    Shah, D., Wischik, D.: Lower bound and optimality in switched networks. In: Proceedings of the 46th Annual Allerton Conference on Communication, Control, and Computing, pp. 1262–1269, Sept. 2008 Google Scholar
  37. 37.
    Srikant, R.: The Mathematics of Internet Congestion Control. Systems & Control: Foundations & Applications. Birkhäuser Boston, Boston (2004) Google Scholar
  38. 38.
    Subramanian, V., Leith, D.: Draining time based scheduling algorithm. In: Proceedings of the 46th IEEE Conf. on Decision and Control, pp. 1162–1167 (2007) Google Scholar
  39. 39.
    Tassiulas, L., Ephremides, A.: Jointly optimal routing and scheduling in packet radio networks. IEEE Trans. Inf. Theory 38(1), 165–168 (1992) CrossRefGoogle Scholar
  40. 40.
    Tassiulas, L., Ephremides, A.: Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Trans. Automat. Contr. 37(12), 1936–1948 (1992) CrossRefGoogle Scholar
  41. 41.
    Traskov, D., Heindlmaier, M., Medard, M., Koetter, R., Lun, D.S.: Scheduling for network coded multicast: a conflict graph formulation. In: Proceedings of the IEEE GLOBECOM Workshop, pp. 1–5 (2008) Google Scholar
  42. 42.
    Ying, L., Shakkottai, S., Reddy, A.: On combining shortest-path and back-pressure routing over multihop wireless networks. In: Proceedings of IEEE Infocom, Rio de Janeiro, Brazil, April 2009 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Wei Chen
    • 1
  • Danail Traskov
    • 2
  • Michael Heindlmaier
    • 2
  • Muriel Médard
    • 3
  • Sean Meyn
    • 1
  • Asuman Ozdaglar
    • 3
  1. 1.Department of Electrical and Computer Engineering and the Coordinated Sciences LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Institute for Comm. EngineeringTechnical University MunichMunichGermany
  3. 3.Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations